Skip to main content

Analysis and Chemical Modification of Bacterial Porins

  • Chapter
Ion Channel Reconstitution

Abstract

The cell envelope of gram-negative bacteria such as Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa consists of three different layers, the outer membrane, the peptidoglycan (murein) layer, and the inner membrane (Nikaido, 1979a; Beveridge, 1981). The inner membrane acts as a real diffusion barrier and contains, in addition to the respiration chain and the H+ -ATPase, a large number of different transport systems for substrates. The peptidoglycan or murein layer consists of repeating N-acetylglucosaminyl-N-acetylmuramyl dimers, which form a macromolecule surrounding the cell (Beveridge, 1981). This layer protects the cells from lysis. The outer membrane is a molecular filter with defined exclusion limits for hydrophilic substrates (Nikaido and Nakae, 1979). In enteric bacteria, the outer membrane acts also as a barrier for hydrophobic compounds such as detergents (Nikaido, 1979b). The active substrates of the molecular sieving properties for hydrophilic substances are a major class of proteins called matrix proteins (Rosenbusch, 1974) or porins (Nakae, 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angus, B. L., Carey, A. M., Caron, D. A., Kropinski, A. M. B., and Hancock, R. E. W., 1981 Outer membrane permeability in Pseudomonas aeruginosa: Comparison of a wild-type with an antibiotic-supersusceptible mutant, Antimicrob. Agents Chemother. 21:299–309.

    Article  Google Scholar 

  • Benz, R., 1984, Structure and selectivity of porin channels, in: Current Topics in Membranes and Transport, Vol. 21 (E. D. Stein, ed.), pp. 199–219, Academic Press, San Diego.

    Google Scholar 

  • Benz, R., 1985, Porin from bacterial and mitochondrial outer membranes, CRC Crit. Rev. Biochem. 19:145–190.

    Article  PubMed  CAS  Google Scholar 

  • Benz, R., and Böhme, H., 1985, Pore formation by an outer membrane protein of the cyanobacterium Anabaena variabilis, Biochim. Biophys. Acta 812:286–292.

    Article  CAS  Google Scholar 

  • Benz, R., and Hancock, R. E. W., 1981, Properties of the large ion permeable pores formed from protein F of Pseudomonas aeruginosa in lipid bilayer membranes, Biochim. Biophys. Acta 646:298–308.

    Article  PubMed  CAS  Google Scholar 

  • Benz, R., Boehler-Kohler, B. A., Dieterle, R., and Boos, W., 1978a, Porin activity in the osmotic shock fluid of Escherichia coli, J. Bacteriol. 135:1080–1090.

    CAS  Google Scholar 

  • Benz, R., Janko, K., Boos, W., and Läuger, P., 1978b, Formation of large ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli, Biochim. Biophys. Acta 511:305–319.

    Article  CAS  Google Scholar 

  • Benz, R., Janko, K., and Läuger, P., 1979, Ionic selectivty of pores formed by the matrix protein (porin) of Escherichia coli, Biochim. Biophys. Acta 551:238–247.

    Article  CAS  Google Scholar 

  • Benz, R., Ishii, J., and Nakae, T., 1980, Determination of ion permeability through the channels made of porins from the outer membrane of Salmonella typhimurium in lipid bilayer membranes, J. Memb. Biol. 56:19–29.

    Article  CAS  Google Scholar 

  • Benz, R., Gimple, M., Poole, K., and Hancock, R. E. W., 1983, An anion selective channel from the Pseudomonas aeruginosa outer membrane, Biochim. Biophys. Acta 730:387–390.

    Article  CAS  Google Scholar 

  • Benz, R., Darveau, R. P., and Hancock, R. E. W., 1984a, Outer membrane protein PhoE from Escherichia coli forms anion-selective pores in lipid bilayer membranes, Eur. J. Biochem. 140:319–324.

    Article  PubMed  CAS  Google Scholar 

  • Benz, R., Poole, K., and Hancock, R. E. W., 1984b, Characterization and chemical modification of small anion specific channels formed in lipid bilayer membranes by outer membrane protein of Pseudomonas aeruginosa, Biophys. J. 45:81–82.

    Article  CAS  Google Scholar 

  • Benz, R., Tokunaga, H., and Nakae, T., 1984c, Properties of chemically modified porin from Escherichia coli in lipid bilayer membranes, Biochim. Biophys. Acta 769:348–356.

    Article  PubMed  CAS  Google Scholar 

  • Benz, R., Schmid, A., and Hancock, R. E. W., 1985, Ion selectivity of gramnegative bacterial porins, J. Bacteriol. 162:722–727.

    PubMed  CAS  Google Scholar 

  • Benz, R., Poole, K., and Hancock, R. E. W., 1986a, Mechanism of ion translocation through the anion selective channel of Pseudomonas aeruginosa outer membrane, J. Gen. Physiol. (in press).

    Google Scholar 

  • Benz, R., Schmid, A., Nakae, T., and Vos-Scheperkeuter, G., 1986b, Pore formation by LamB preparations of E. coli in lipid bilayer membranes, J. Bacteriol. (in press).

    Google Scholar 

  • Beveridge, T. J., 1981, Ultrastructure, chemistry and function of the bacterial wall, Int. Rev. Cytol. 72:229–317.

    Article  PubMed  CAS  Google Scholar 

  • Castellan, G. W., 1983, Physical Chemistry. The Electrical Current in Ionic Solutions, pp. 769–780, Addison-Wesley, Reading.

    Google Scholar 

  • Chen, R., Kramer, C., Schmidmayer, W., and Henning, U., 1979, Primary structure of major outer membrane protein I of Escherichia coli B, Proc. Natl. Acad. Sci. U.S.A. 76:5014–5017.

    Article  PubMed  CAS  Google Scholar 

  • Clément, J. M., and Hofnung, M., 1981, Gene sequence of the λ receptor, an outer membrane protein of Escherichia coli K12, Cell 27:507–514.

    Article  PubMed  Google Scholar 

  • Cohen, F. S., Akabas, M. H., and Finkelstein, A., 1982, Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane, Science 217:458–460.

    Article  PubMed  CAS  Google Scholar 

  • Darveau, R. P., Hancock, R. E. W., and Benz, R., 1984, Chemical modification of the anion selectivity of the PhoE porin from the Escherichia coli outer membrane, Biochim. Biophys. Acta 774:67–74.

    Article  PubMed  CAS  Google Scholar 

  • Di Rienzo, J. M., Nakamura, K., and Inouye, M., 1978, The outer membrane of gram-negative bacteria: Biosynthesis, assembly and function, Annu. Rev. Biochem. 47:481–532.

    Article  Google Scholar 

  • Dorset, D. L., Engel, A., Häner, M., Massalski, A., and Rosenbusch, J. P., 1983, Two-dimensional crystal packing of matrix porin. A channel forming protein in Escherichia coli outer membrane, J. Mol. Biol. 165:701–710.

    Article  PubMed  CAS  Google Scholar 

  • Dorset, D. L., Engel, A., Massalski, A., and Rosenbusch, J. P., 1984, Three dimensional structure of a membrane pore. Electron microscopical analysis of Escherichia coli outer membrane matrix porin, Biophys. J. 45:128–129.

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, G., 1965, Some elementary factors involved in specific ion permeation. Excerpta Medica Int. Cong. Ser. 87:489–506.

    Google Scholar 

  • Ferenci, T., Schwentorat, M., Ullrich, S., and Vilmart, J., 1980, Lambda receptor in the outer membrane of Escherichia coli as a binding protein for maltodextrins and starch polysaccharides, J. Bacteriol. 142:521–526.

    PubMed  CAS  Google Scholar 

  • Garavito, R. M., Jenkins, J. A., Jansonius, J. N., Karlsson, R., and Rosenbusch, J. P., 1983, X-ray diffraction analysis of matrix porin, an integral membrane protein A from Escherichia coli outer membranes, J. Mol. Biol. 164:313–327.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, R. E. W., and Nikaido, H., 1978, Outer membranes of gram-negative bacteria XIX. Isolation from Pseudomonas aeruginosa PA 01 and use in reconstitution and definition of permeability barrier, J. Bacteriol. 136:381–390.

    PubMed  CAS  Google Scholar 

  • Hancock, R. E. W., Decad, G. M., and Nikaido, H., 1979, Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeruginosa PA 01, Biochim. Biophys. Acta 554:323–331.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, R. E. W., Poole, R. K., and Benz, R., 1982, Outer membrane protein P of Pseudomonas aeruginosa regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes, J. Bacteriol. 150:730–738.

    PubMed  CAS  Google Scholar 

  • Hancock, R. E. W., Poole, R. K., Gimple, M., and Benz, R., 1983, Modification of the conductance, selectivity, and concentration-dependent saturation of Pseudomonas aeruginosa protein P channels by chemical acetylation, Biochim. Biophys. Acta 735:137–144.

    Article  PubMed  CAS  Google Scholar 

  • Inokuchi, K., Muthoh, N., Matsuyama, S., and Mizushima, S., 1982, Primary structure of the OmpF gene that codes for a major outer membrane protein of Escherichia coli K12, Nucleic Acids Res. 10:6957–6968.

    Article  PubMed  CAS  Google Scholar 

  • Läuger, P., 1973, Ion transport through pores: A rate-theory analysis Biochim. Biophys. Acta 311:423–441.

    Article  Google Scholar 

  • Luckey, M., and Nikaido, H., 1980a, Diffusion of solutes through channels produced by phage lambda receptor protein of Escherichia coli: Inhibition by higher oligosaccharides of maltose series, Biochem. Biophys. Res. Commun. 93:166–171.

    Article  PubMed  CAS  Google Scholar 

  • Luckey, M., and Nikaido, H., 1980b, Specificity of diffusion channels produced by X phage receptor protein of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 77:167–171.

    Article  CAS  Google Scholar 

  • Lugtenberg, B., and van Alphen, L., 1983, Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria, Biochim. Biophys. Acta 737:51–115.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, T., Chou, M.-Y., and Inouye, M., 1983, A comparative study on the genes for three porins of the Escherichia coli outer membrane: DNA sequence of the osmoregulated ompC gene, J. Biol. Chem. 258:6932–6940.

    PubMed  CAS  Google Scholar 

  • Nakae, T., 1975, Outer membrane of Salmonella typhimurium: Reconstitution of sucrose-permeable membrane vesicles, Biochem. Biophys. Res. Commun. 64:1224–1230.

    Article  PubMed  CAS  Google Scholar 

  • Nakae, T., 1976, Identification of the outer membrane protein of Escherichia coli that produces transmembrane channels in reconstituted vesicle membranes, Biochem. Biophys. Res. Commun. 71:877-889.

    Google Scholar 

  • Nakae, T., Ishii, J., and Tokunaga, M., 1979, Subunit structure of functional porin oligomers that form permeability channels in the outer membrane of Escherichia coli, J. Biol. Chem. 254:1457–1461.

    CAS  Google Scholar 

  • Nakamura, K., and Mizushima, S., 1976, Effects of heating in dodecyl sulfate solution on the conformation and electrophoretic mobility of isolated major outer membrane proteins from Escherichia coli K12, J. Biochem. 80:1411–1422.

    PubMed  CAS  Google Scholar 

  • Nikaido, H., 1979a, Permeability of the outer membrane of bacteria, Angew. Chem. 18:337–350.

    Article  CAS  Google Scholar 

  • Nikaido, H., 1979b, Nonspecific transport through the outer membrane, in: Bacterial Outer Membranes (M. Inouye, ed.), pp. 367-407, Wiley-Interscience, New York.

    Google Scholar 

  • Nikaido, H., 1983, Proteins forming large channels from bacterial and mitochondrial outer membranes: Porins and phage lambda receptor protein, Methods. Enzymol. 97:85–100.

    Article  PubMed  CAS  Google Scholar 

  • Nikaido, H., and Nakae, T., 1979, The outer membrane of gram-negative bacteria, Adv. Microb. Physiol. 20:163–250.

    Article  PubMed  CAS  Google Scholar 

  • Nikaido, H., and Rosenberg, E. Y., 1981, Effect of solute size on diffusion rates through the transmembrane pores of the outer membrane of Eseherichia coli, J. Gen. Physiol. 77:121–135.

    Article  CAS  Google Scholar 

  • Nikaido, H., and Rosenberg, E. Y., 1983, Porin channels in Escherichia coli: Studies with liposomes reconstituted from purified proteins, J. Bacteriol. 153:241–252.

    PubMed  CAS  Google Scholar 

  • Nikaido, H., and Vaara, M., 1985, Molecular basis of bacterial outer membrane permeability, Microbiol. Rev. 49:1–32.

    PubMed  CAS  Google Scholar 

  • Nikaido, H., Rosenberg, E. Y., and Foulds, J., 1983, Porin channels in Escherichia coli: Studies with β-lactams in intact cells, J. Bacteriol. 153:232–240.

    PubMed  CAS  Google Scholar 

  • Overbeeke, N., Bergmans, H., van Mansfeld, F., and Lugtenberg, B., 1983, Complete nucleotide sequence of phoE, the structural gene for the phosphate limitation inducible outer membrane pore protein of Escherichia coli K12, J. Mol. Biol. 163:513–532.

    Article  PubMed  CAS  Google Scholar 

  • Overbeeke, N., van Scharrenburg, G., and Zugtenberg, B., 1980, Antigenic relationships between pore proteins of Escherichia coli K12, Eur. J. Biochem. 110:247–254.

    Article  PubMed  CAS  Google Scholar 

  • Pauling, L., 1960, The Nature of the Chemical Bond, Cornell University Press, Ithaca.

    Google Scholar 

  • Rosenbusch, J. P., 1974, Characterization of the major envelope protein from Escherichia coli, J. Biol. Chem. 249:8019–8029.

    PubMed  CAS  Google Scholar 

  • Schindler, H., and Rosenbusch, J. P., 1978, Matrix protein of Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 75:3751–3755.

    Article  PubMed  CAS  Google Scholar 

  • Stock, J. B., Rauch, B., and Roseman, S., 1977, Periplasmic space in Salmonella typhimurium and Escherichia coli, J. Biol. Chem. 252:7850–7861.

    CAS  Google Scholar 

  • Szmelcman, S., and Hofnung, M., 1975, Maltose transport in Escherichia coli K12: Involvement of the bacteriophage lambda receptor, J. Bacteriol. 124:112–118.

    PubMed  CAS  Google Scholar 

  • Tokunaga, M., Tokunaga, H., Okajima, Y., and Nakae, T., 1979, Characterization of porins from the outer membrane of Salmonella typhimurium. 2 Physical properties of the functional oligomeric aggregates, Eur. J. Biochem. 95:441–448.

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga, H., Tokunaga, M., and Nakae, T., 1981, Permeability properties of chemically modified porin trimers from Escherichia coli B, J. Biol. Chem. 256:8024–8029.

    PubMed  CAS  Google Scholar 

  • Tommassen, J., and Lugtenberg, B., 1980, Outer membrane protein e of Escherichia coli K-12 is coregulated with alkaline phosphatase, J. Bacteriol. 143:151–157.

    PubMed  CAS  Google Scholar 

  • Tommassen, J., Pugsley, A. P., Korteland, J., Verbakel, J., and Lugtenberg, B., 1984, Gene encoding a hybrid ompF-PhoE pore protein in the outer membrane of Escherichia coli K12, Mol. Gen. Genet. 197:503–508.

    Article  PubMed  CAS  Google Scholar 

  • Tommassen, J., van der Ley, P., van Zeijl, M., and Agterberg, M., 1985, Localization of functional domains in E. coli K-12 outer membrane porins with the aid of hybrid genes obtained by in vivo recombination, EMBO J. 4:1583–1587.

    PubMed  CAS  Google Scholar 

  • van Alphen, L., and Lugtenberg, B., 1978, Influence of osmolarity of the growth medium on the outer membrane protein pattern of Escherichia coli, J. Bacteriol. 131:623–630.

    Google Scholar 

  • Yoshimura, F., Zalman, L. S., and Nikaido, H., 1983, Purification and properties of Pseudomonas aeruginosa porin, J. Biol. Chem. 258:2308–2314.

    PubMed  CAS  Google Scholar 

  • Young, J. D.-E., Blake, M., Mauro, A., and Cohn, Z. A., 1983, Properties of the major outer membrane protein from Neisseria gonorrhoeae incorporated into model lipid membranes, Proc. Natl. Acad. Sci. U.S.A. 80:3831–3835.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benz, R. (1986). Analysis and Chemical Modification of Bacterial Porins. In: Miller, C. (eds) Ion Channel Reconstitution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1361-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1361-9_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1363-3

  • Online ISBN: 978-1-4757-1361-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics