Skip to main content

Abstract

Intracellular calcium ions play a critical role in many tissues. In many cases, a rise in intracellular calcium is the trigger for one or more cellular functions such as release of neurotransmitters from nerve terminals, control of fertilization, and contraction of most types of muscle cells including skeletal, smooth, and cardiac (Byerly and Hagiwara, 1981). Calcium ions enter cells by moving down their electrochemical gradient through channels in specific transmembrane proteins. In most cases, these channels are voltage gated and open when the membrane is depolarized. In some nerve and muscle cells, an inward calcium current can actually account for regenerative spikes. The calcium channel is a major site for regulation by drugs and hormones. For example, in heart and invertebrate neurons, neurotransmitters, apparently acting via a cAMP-protein phosphorylation cascade, have been shown to regulate calcium channels in the target cells (Reuter, 1983). A number of substances (the so-called “organic calcium antagonists”) have been shown to modify calcium channel activity in excitable cells (Triggle and Janis, 1984). These blockers (e.g., verapamil, nifedipine, and diltiazem) have been used clinically to treat certain cardiac arrhythmias, angina, and hypertension (see Triggle and Janis, 1984). The dihydropyridines appear to be the most exciting of these organic calcium antagonists because of their high potency and their potential as therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affolter, H., and Coronado, R., 1985, Planar bilayer recording of single calcium channels from purified muscle transverse tubules, Biophys. J. 47:434a.

    Google Scholar 

  • Almers, W., and McCleskey, E. W., 1984, Nonselective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore, J. Physiol. (Lond.) 353:585–608.

    CAS  Google Scholar 

  • Bean, B., 1984, Nitrendipine block of cardiac calcium channels: High-affinity binding to the inactivated state, Proc. Nad. Acad. Sci., U.S.A. 81:6388–6392.

    Article  CAS  Google Scholar 

  • Blaustein, M. P., and Goldring, J. M., 1975, Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe: Evidence that synaptosomes have potassium diffusional potentials, J. Physiol. (Land.) 247:589-615.

    Google Scholar 

  • Blaustein, M. P., Kendrick, N. C., Fried, R. C., and Ratzlaff, R. W., 1977, Calcium metabolism at the mammalian presynaptic nerve terminal: Lessons from the synaptosome, in Society for Neuroscience Symposia, Volume 2 (M. Cowan and J. A. Ferrendelli, eds.) pp. 172–194, Society for Neuroscience, Bethesda, Maryland.

    Google Scholar 

  • Brown, A., Kunze, D., and Yatani, A., 1984, The agonist effect of dihydropyridines on Ca channels, Nature 311:570–572.

    Article  PubMed  CAS  Google Scholar 

  • Carbone, E., and Lux, H., 1984, A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones, Nature 310:501–502.

    Article  PubMed  CAS  Google Scholar 

  • Cavalie, A., Ochi, R., Pelzer, D., and Trautwein, W., 1983, Elementary currents through Ca channels in guinea pig myocytes, Pflugers Archiv 398:284–297.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. S., Akabas, M. H., and Finkelstein, A., 1982, Osmotic swelling of phospholipid vesicles causes them to fuse with a planar lipid bilayer membrane, Science 217:458–460.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, R., and Affolter, H., 1985, Kinetics of dihydropyridine-sensitive single calcium channels from purified muscle transverse tubules, Biophys. J. 47:434a.

    Article  Google Scholar 

  • Curtis, B., and Catterall, W., 1984, Purification of the calcium antagonist receptor of the voltagesensitive calcium channel from skeletal muscle transverse tubules, Biochemistry 23:2113–2118.

    Article  PubMed  CAS  Google Scholar 

  • Drapeau, P., and Nachshen, D., 1984, Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain, J. Physiol. 348:493–510.

    PubMed  CAS  Google Scholar 

  • Ehrlich, B., Finkelstein, A., Forte, M., and Kung, C., 1984, Voltage-dependent calcium channels from Paramecium cilia incorporated into planar lipid bilayers, Science 225:427–428.

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara, S., and Byerly, L., 1981, Calcium channel, Ann. Rev. Neurosci. 4:69–125.

    Article  PubMed  CAS  Google Scholar 

  • Hess, P., Lansman, J., and Tsien, R. W., 1984, Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists, Nature 311:538–544.

    Article  PubMed  CAS  Google Scholar 

  • Hess, P., and Tsien, R. W., 1984, Mechanism of ion permeation through calcium channels, Nature 309:453–456.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1984, Ionic channels in excitable membranes, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Krueger, B. K., Ratzlaff, R. W., Strichartz, G. R., and Blaustein, M. P., 1979. Saxitoxin, binding to synaptosomes, membranes, and solubilized binding sites from rat brain, J. Membr. Biol. 50:287-310.

    Google Scholar 

  • Krueger, B. K., Worley III, J. F., and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayer membranes, Nature (Lond.) 303:172-175.

    Google Scholar 

  • Lansman, J., Hess, P., and Tsien, R. W., 1985, Direct measurement of entry and exit rates for calcium ions in single calcium channels, Biophys. J. 41:67a.

    Google Scholar 

  • Läuger, P., 1983, Conformational transitions of ionic channels, in Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 177–188, Plenum, New York.

    Chapter  Google Scholar 

  • Moore, K. E., and Johnston, C. A., 1982, The median eminence: Aminergic control mechanisms, in Neuroendocrine perspectives, Volume 1 (E. E. Mueller and R. M. Macleod, eds.), pp. 25–68, Elsevier Biomedical Press, New York.

    Google Scholar 

  • Nachshen, D. A., and Blaustein, M. P., 1979, The effects of some organic calcium antagonists on calcium influx in presynaptic nerve terminals, Mol. Pharmacol. 16:579–586.

    CAS  Google Scholar 

  • Nachshen, D. A., and Blaustein, M. P., 1980, Some properties of potassium-stimulated calcium influx in presynaptic nerve endings, J. Gen. Physiol. 76:709–728.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M. T., 1983, Single calcium-channel current measurements from brain synaptosomes in planar lipid bilayers, Soc. Neurosci. Abstr. 9.

    Google Scholar 

  • Nelson, M. T., French, R. J., and Krueger, B. K., 1984, Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers, Nature 308:77–80.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M. T., 1984, Permeant ions affect both the conductance and closing rate of single calcium channels from rat brain in planar bilayers, J. Physiol. 357:58P.

    Google Scholar 

  • Nelson, M. T., 1985, Divalent cation interactions with single calcium channels from rat brain: Evidence for two sites, Biophys. J. 47:67a.

    Google Scholar 

  • Nowycky, M., Fox, A. P., and Tsien, R. W., 1985, Three types of calcium channels in chick dorsal root ganglion cells, Biophys. J. 47:67a.

    Google Scholar 

  • Orozco, C., Suarez-Isla, B. A., Froehlich, J., and Heller, P., 1985, Calcium channels in sarcoplasmic reticulum membranes, Biophys. J. 47:57a.

    Google Scholar 

  • Reuter, H., 1983, Calcium channel modulation by neurotransmitters, enzymes and drugs, Nature 301:569–574.

    Article  PubMed  CAS  Google Scholar 

  • Schlindler, H., and Quast, U., 1980, Functional acetylcholine receptor from Torpedo marmorata in planar membranes, Proc. Natl. Acad. Sci. U.S.A. 77:3052–3056.

    Article  Google Scholar 

  • Smith, J., Coronado, R., and Meissner, G., 1985, A nucleotide-stimulated calcium conducting channel from sarcoplasmic reticulum incorporated into planar lipid bilayers, Biophys. J. 47:451a.

    Article  Google Scholar 

  • Spruce, A. E., Standen, N. B., Stanfield, P. R., and Wilson, S. W., 1984, Rubidium ions prolong potassium channel opening in frog skeletal sarcolemma, J. Physiol. (Lond.) 357:45P.

    Google Scholar 

  • Triggle, D., and Janis, R., 1984, Calcium channel antagonists: New perspectives from the radioligand binding assay, in: Modern Methods in Pharmacology, pp. 1-28, Alan Liss, New York.

    Google Scholar 

  • Tsien, R. W., 1983, Calcium channels in excitable cell membranes, Ann. Rev. Physiol. 45:341–358.

    Article  CAS  Google Scholar 

  • Wilson, D. L., Morimoto, K., Tsuda, Y., and Brown, A., 1983, Interaction between calcium ions and surface charge as it relates to calcium currents, J. Membr. Biol. 72:309–324.

    Google Scholar 

  • Yellen, G., 1984, Ionic permeation and blockade in Ca-activated K channels of bovine chromaffin cells, J. Gen. Physiol. 84:157–187.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nelson, M.T. (1986). Calcium Channels. In: Miller, C. (eds) Ion Channel Reconstitution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1361-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1361-9_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1363-3

  • Online ISBN: 978-1-4757-1361-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics