Skip to main content

Ion Channel Electrostatics and the Shapes of Channel Proteins

  • Chapter
Ion Channel Reconstitution

Abstract

The accelerating progress that is being made in channel reconstitution will eventually lead to the determination of protein structures, i.e., of channel shapes. These will surely not all be right circular cylinders, and a pore’s structure can affect ion passage through it in two ways. Short-range forces govern selectivity and the detailed nature of the potential energy profile for ion permeation. Long-range electrostatic forces control ion access to the channel, influence the relationship of apparent electrical distance to structure, and provide a slowly varying background potential, which modifies channel kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almers, W., and McCleskey, E. W., 1984, Non-selective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore, J. Physiol. (Lond.) 353:585-608.

    Google Scholar 

  • Andersen, O. S., 1978, Ion transport across simple membranes, in: Renal Function (G. H. Giebiseh and E. F. Purcell, eds.), pp. 71–99, Josiah Macy Foundation, New York.

    Google Scholar 

  • Andersen, O. S., 1983, Ion movement through gramicidin A channels. Studies on the diffusion controlled association step, Biophys. J. 41:147–165.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, O. S., Finkelstein, A., Katz, I., and Cass, A., 1976, Effect of phloretin on the permeability of thin lipid membranes, J. Gen. Physiol. 67:749–771.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C. M., 1975, Ionic pores, gates and gating currents, Q. Rev. Biophys. 7:179–210.

    Article  Google Scholar 

  • Armstrong, C. M., and Taylor, S., 1980, Interaction of barium ions with potassium channels in squid giant axons, Biophys. J. 30:473–488.

    Article  PubMed  CAS  Google Scholar 

  • Bamberg, E., and Läuger, P., 1977, Blocking of the gramicidin channel by divalent cations, J. Membr. Biol. 35:351–375.

    Article  CAS  Google Scholar 

  • Bamberg, E., Noda, K., Gross, E., and Lauger, P., 1976, Single channel parameters of gramicidin A, B and C., Biochim. Biophys. Acta 418:223–228.

    Google Scholar 

  • Benz, R., Ishii, J., and Takae, T., 1980, Determination of ion permeability through channels made of porins from the outer membrane of Salmonella typhimurium in lipid bilayer membranes, J. Membr. Biol. 56:19–29.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, R., Rosenberg, R. L., and Miller, C., 1980, Ionic selectivity, saturation and block in a K channel from sarcoplasmic reticulum, J. Gen. Physiol. 76:425–446.

    Article  PubMed  CAS  Google Scholar 

  • French, R. J., and Shoukimas, J. J., 1981, Blockage of squid axon potassium conductance by internal tetra-N-alkylammonium ions of various sizes, Biophys. J. 34:271–292.

    Article  PubMed  CAS  Google Scholar 

  • Getzoff, E. D., and Tainer, J. A., 1986, Superoxide dismutase as a model ion channel, in: Ion Channel Reconstitution (C. M. Miller, ed.), pp. 57-73, Plenum Press, New York.

    Google Scholar 

  • Getzoff, E. D., Tainer, J. A., Weiner, P. K., Kollman, P. A. Richardson, J. S., and Richardson, D. C., 1983, Electrostatic recognition between Superoxide and copper, zinc Superoxide dismutase, Nature 306:287–290.

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara, S., and Byerly, L. A., 1981, Calcium channel, Annu. Rev. Neurosci. 4:69–125.

    Article  PubMed  CAS  Google Scholar 

  • Heitz, F., Spach, F., and Trudelle, Y., 1982, Single channels of 9,11,13,15-destryptophyl-phenalanyl gramicidin A, Biophys. J. 40:87–89.

    Article  PubMed  CAS  Google Scholar 

  • Heitz, F., Spach, F., and Trudelle, Y., 1984, Single channels of various gramicidins. Voltage effects, Biophys. J. 45:97-99.

    Google Scholar 

  • Hess, P., and Tsien, P. W., 1984, Mechanism of ion permeation through calcium channels, Nature 309:453–456.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1975, Ionic selectivity of Na and K channels of nerve membranes, in: Membranes, Vol. 3 (G. Eisenman, ed.), pp. 255-323, Marcel Dekker, New York.

    Google Scholar 

  • Hille, B., and Schwartz, E., 1978, Potassium channels as multi-ion single-file pores, J. Gen. Physiol. 72:409–442.

    Article  PubMed  CAS  Google Scholar 

  • Hladky, S. B., and Haydon, D. A., 1973, Membrane conductance and surface potential, Biochim. Biophys. Acta 318:464–468.

    Article  CAS  Google Scholar 

  • Jordan, P. C., 1981, Energy barriers for the passage of ions through channels. Exact solution of two electrostatic problems, Biophys. Chem. 13:203–212.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, P. C., 1982, Electrostatic modeling of ion pores. Energy barriers and electric field profiles, Biophys. J. 39:157–164.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, P. C., 1983, Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential, Biophys. J. 41:189–195.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, P. C., 1984a, The total electrostatic potential in a gramicidin channel, J. Membr. Biol. 78:91–102.

    Article  CAS  Google Scholar 

  • Jordan, P. C., 1984b, The effect of pore structure on energy barriers and applied voltage profiles. I. Symmetrical channels, Biophys. J. 45:1091–1100.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, P. C., 1984c, The effect of pore structure on energy barriers and applied voltage profiles. II. Unsymmetrical channels, Biophys. J. 45:1101–1107.

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood, J. G., 1939, The dielectric polarization of polar liquids, J. Chem. Phys. 7:911–919.

    Article  CAS  Google Scholar 

  • Kistler, J., and Stroud, R. M., 1981, Crystalline arrays of membrane-bound acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 78:3678–3682.

    Article  PubMed  CAS  Google Scholar 

  • Koeppe, R. C., Hodgson, K. O., and Stryer, L., 1978, Helical channels in crystals of gramicidin A and of a cesium-gramicidin A complex: An X-ray diffraction study, J. Mol. Biol. 121:41–54.

    Article  PubMed  CAS  Google Scholar 

  • Latorre, R., and Miller, C., 1983, Conduction and selectivity in potassium channels, J. Membr. Biol. 71:11–30.

    Article  PubMed  CAS  Google Scholar 

  • Latorre, R., Vergara, C., and Hildalgo, C., 1982, Reconstitution in planar lipid bilayers of a Ca2+ — dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 79:805–809.

    Article  PubMed  CAS  Google Scholar 

  • Läuger, P., 1976, Diffusion-limited ion flow through pores, Biochim. Biophys. Acta 455:493–509.

    Article  PubMed  Google Scholar 

  • Lee, W. K., and Jordan, P. C., 1984, Molecular dynamics simulation of cation motion in water-filled, gramicidin-like pores, Biophys. J. 46:805–819.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, D. G., 1978, Electrostatic calculations for an ion channel. I. Energy and potential profiles and interaction between ions, Biophys. J. 22:209–219.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, C. A., and Stevens, C. F., 1979, Mechanism of ion permeation through channels in a post-synaptic membrane, in: Membrane Transport Processes Vol. 3 (C. F. Stevens and R. W. Tsien, eds.), pp. 133–151, Raven Press, New York.

    Google Scholar 

  • MacKay, D. H. J., Berens, P., Wilson, K. R., and Hagler, A. T., 1984, Structure and dynamics of ion transport through gramicidin A, Biophys. J. 46:229–248.

    Article  PubMed  CAS  Google Scholar 

  • Maynard, T., Edwards, C., and Anraku, M., 1977, Permeability of the endplate membrane activated by acetylcholine to some organic cations, J. Neurobiol. 8:173–184.

    Article  Google Scholar 

  • Miller, C., 1982, Feeling around inside a channel in the dark, in: Transport in Biological Membranes (R. Antolini, ed.), pp. 99–108, Raven Press, New York.

    Google Scholar 

  • Parsigian, V. A., 1969, Energy of an ion crossing a low dielectric membrane: Solution to four relevant electrostatic problems, Nature 221:844–846.

    Article  Google Scholar 

  • Pickar, A.D., and Benz, R., 1978, Transport of oppositely charged lipophilic ion probes in lipid bilayers having various structures, J. Membr. Biol. 44:353–376.

    Article  CAS  Google Scholar 

  • Schulz, L. E., and Schirmer, R. H., 1978, Principles of Protein Structure, p. 30, Springer, New York.

    Google Scholar 

  • Swenson, R. P., Jr., 1981, Inactivation of potassium current in squid axon by a variety of quaternary ammonium ions, J. Gen. Physiol. 77:255-271.

    Google Scholar 

  • Urry, D. W., 1971, The gramicidin A transmembrane channel: A proposed πl, d helix, Proc. Natl. Acad. Sci. U.S.A. 68:672–676.

    Article  PubMed  CAS  Google Scholar 

  • Urry, D. W., Venkatachalam, C. M., Spisni, A., Bradley, R. J., Trapani, T. L., and Prasad, K. U., 1980a, The malonyl gramicidin channel: NMR-derived rate constants and comparison of calculated and experimental single-channel currents, J. Membr. Biol. 55:29–51.

    Article  PubMed  CAS  Google Scholar 

  • Urry, D. W., Venkatachalam, C. M., Spisni, A., Lauger, P., and Khalid, M. A., 1980b, Rate theory calculation of gramicidin single channel currents using NMR-derived rate constants, Proc. Natl. Acad. Sci. U.S.A. 77:2028–2032.

    Article  PubMed  CAS  Google Scholar 

  • Vergara, C., and Latorre, R., 1983, Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar bilayers: Evidence for a Ca2+ and Ba2+ blockade, J. Gen. Physiol. 82:543–568.

    Article  PubMed  CAS  Google Scholar 

  • Wall, F. T., 1974, Chemical Thermodynamics, ed. 3, W. H. Freeman, San Francisco.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jordan, P.C. (1986). Ion Channel Electrostatics and the Shapes of Channel Proteins. In: Miller, C. (eds) Ion Channel Reconstitution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1361-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1361-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1363-3

  • Online ISBN: 978-1-4757-1361-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics