Characterization of Dihydropyridine-Sensitive Calcium Channels from Purified Skeletal Muscle Transverse Tubules

  • Roberto Coronado
  • Hubert Affolter

Abstract

The activity of calcium channels contributes to a large number of cellular functions, of which the best known are neurotransmitter release, pacemaking, motility, and muscle contraction (Reuter, 1983; Hille, 1984). Yet many more roles may be envisioned, as suggested by the fact that almost all cells, procaryotes and eucaryotes, have well-defined calcium currents (see Hille, 1984). More than any other channel, the calcium channel is presently the target of vigorous chemical and clinical research aming to understand how antiarrhythmic and antihypertensive drugs, such as dihydropyridines, modulate, block, or antagonize calciumchannel function (Janis et al., 1985).

Keywords

Calcium Channel Calcium Current Open Event Rabbit Skeletal Muscle Holding Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Affolter, H., and Coronado, R., 1985a, Planar bilayer recording of single calcium channels from purified muscle transverse tubules, Biophys. J. 47:434a.Google Scholar
  2. Affolter, H., and Coronado, R., 1985b, Agonists Bay-K8644 and CGP-28392 open calcium channels reconstituted from skeletal muscle transverse tubules, Biophys. J. 48:341–347.PubMedCrossRefGoogle Scholar
  3. Aimers, W., Fink, R., and Palade, P. T., 1981, Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization. J. Physiol. 312:177–207.Google Scholar
  4. Aimers, W., and McCleskey, E. W., 1984, Non-selective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore, J. Physiol. 353:585–608.Google Scholar
  5. Bean, B. P., 1984, Nitrendipine block of cardiac calcium channels: High affinity binding to the inactivated state, Proc. Natl. Acad. Sci. U.S.A. 81:6388–6392.PubMedCrossRefGoogle Scholar
  6. Borsotto, M., Norman, R. I., Fosset, M., and Lazdunski, M., 1984, Solubilization of the nitrendipine receptor of skeletal muscle transverse tubule membranes: Interactions with specific inhibitors of the voltage-dependent calcium channel. Eur. J. Biochem. 142:449–455.PubMedCrossRefGoogle Scholar
  7. Brown, A. M., Wilson, D. L., and Lux, H. D., 1984a, Activation of calcium channels, Biophys. J. 45:125–127.PubMedCrossRefGoogle Scholar
  8. Brown, A. M., Kunze, D. L., and Yatani, A., 1984b, The agonist effect of dihydropyridines on Ca channels, Nature 311:570–572.PubMedCrossRefGoogle Scholar
  9. Brown, A. M., Lux, H. D., and Wilson, D. L., 1984c, Activation and inactivation of single calcium channels in snail neurons, J. Gen. Physiol. 83:751–769.PubMedCrossRefGoogle Scholar
  10. Campbell, K. P., Lipshutz, G. M., and Denney, G. H., 1984, Direct photoaffinity labeling of the high affinity nitrendipine-binding site in subcellular membrane fractions isolated from canine myocardium, J. Biol. Chem 259:5384–5387.PubMedGoogle Scholar
  11. Coronado, R., 1985, Recent advances in planar phospholipid bilayer techniques for monitoring ion channels, Ann. Rev. Biophys. Biophys. Chem. (in press).Google Scholar
  12. Coronado, R., and Affolter, H., 1985a, Kinetics of dihydropyridine-sensitive single calcium channels from purified muscle transverse tubules, Biophys. J. 47:434a.CrossRefGoogle Scholar
  13. Coronado, R., and Affolter, H., 1985b, Insulation of the conduction pathway of muscle transverse tubule calcium channels from the surface charge of bilayer phospholipid, J. Gen. Physiol. (in press).Google Scholar
  14. Curtis, B. M., and Catterall, W. A., 1983, Solubilization of the calcium antagonist receptor from rat brain, J. Biol. Chem. 258:7280–7283.PubMedGoogle Scholar
  15. Curtis, B. M., and Catterall, W. A., 1984, Purification of the calcium antagonist receptor of the voltagesensitive calcium channel from skeletal muscle transverse tubules, Biochemistry 23:2113–2117.PubMedCrossRefGoogle Scholar
  16. Ehlert, F. J., Roeskes, W. R., Itoga, E., and Yamamura, H. I., 1982, The binding of [3H]-nitrendipine to receptors for Ca2+ channel antagonists in the heart, cerebral cortex and ileum of rats, Life Sci. 30:2191–2202.PubMedCrossRefGoogle Scholar
  17. Fleckenstein, A., 1984, Calcium antagonism: History and prospects for a multifaceted pharmacodynamic principle, in Calcium Antagonists and Cardiovascular Disease, (L. H. Opie, ed.), pp 9-28, Raven Press, New York.Google Scholar
  18. Fosset, M., Jaimovich, E., Delpont, E., and Lazdunski, M., 1983, Nitrendipine receptors in skeletal muscle, J. Biol. Chem. 258:6086–6092.PubMedGoogle Scholar
  19. Freedman, S. B., and Miller, R. J., 1984, Calcium channel activation: A different type of drug action, Proc. Nad. Acad. Sci. U.S.A. 81:5580–5583.CrossRefGoogle Scholar
  20. Fukushima, Y., and Hagiwara, S., 1983, Voltage-gated Ca2+ channel in mouse myeloma cells. Proc. Natl. Acad. Sci. U.S.A. 80:2240–2243.PubMedCrossRefGoogle Scholar
  21. Garcia, M. L., Trumble, M. J., Reuben, J. P., and Kaczorowski, G. J., 1984, Characterization of verapamil binding sites in cardiac membrane vesicles, J. Biol. Chem. 259:15013–15016.PubMedGoogle Scholar
  22. Glossmann, H., Ferrsy, D. R., Leubbecke, F., Mewes, R., and Hoffmann, F., 1982, Calcium channels: Direct identification with radioligand binding studies, Trends in Pharmacol. Sci. 3:431–437.CrossRefGoogle Scholar
  23. Hescheler, J., Pelzer, D., Trube, G., and Trautwein, W., 1982, Does the organic calcium channel blocker D600 act from the inside or outside on the cardiac cell membrane? Pflugers Arch. 393:287–291.PubMedCrossRefGoogle Scholar
  24. Hess, P., and Tsien, R. W., 1984, Mechanism of ion permeation through calcium channels, Nature 309:453–456.PubMedCrossRefGoogle Scholar
  25. Hess, P., Lansman, J. B., and Tsien, R. W., 1984, Different modes of calcium channel gating favoured by Ca agonists and antagonists, Nature 11:538–544.CrossRefGoogle Scholar
  26. Hille, B., 1977, The pH-dependent rate of action of local anesthetics on the node of Ranvier, J. Gen. Physiol. 69:475–496.PubMedCrossRefGoogle Scholar
  27. Hille, B., 1984, Evolution and Diversity, in Ionic Channels of Excitable Membranes (B. Hille, ed.), pp. 371-383. Sinauer Associates, Sutherland, Massachusetts.Google Scholar
  28. Janis, R. A., Bellemann, P., Sarmiento, J. G., and Triggle, 1985, The dihydropyridine receptor in IX Bayer Symposium. Cardiovascular Effects of Dihydropyridine-Type Calcium Antagonists and Agonists (A. Fleckenstein and C. Breemen, eds.), Springer-Verlag, New York.Google Scholar
  29. Kawamoto, R., Brant, N., and Caswell, A., 1984, Localization and solubilization of nitrendipine binding sites in skeletal muscle, Biophys. J. 45:206a.Google Scholar
  30. Kirley, T. L., and Schwartz, A., 1984, Nimodipine and nitrendipine binding to rabbit skeletal t-tubular membranes: Effects of D-cis-Diltiazem (DTZ) and attempts to solubilize and affinity label the putative calcium channel, Biophys. J. 45:396a.Google Scholar
  31. Kokubun, S., and Reuter, H., 1984, Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells, Proc. Natl. Acad. Sci. U.S.A. 81:4824–4827.PubMedCrossRefGoogle Scholar
  32. Kostyuk, P. G., Mironov, S. L., and Shuba, Y. M., 1983, Two ion-selecting filters in the calcium channel of the somatic membrane of mollusc neurons, J. Memb. Biol. 76:83–93.CrossRefGoogle Scholar
  33. Latorre, R., Vergara, C., and Hidalgo, C., 1982, Reconstitution in planar bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 79:805–809.PubMedCrossRefGoogle Scholar
  34. Lee, K. S., and Tsien, R. W., 1983, Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells, Nature 302:790–794.PubMedCrossRefGoogle Scholar
  35. Lux, H. D., and Brown, A. M., 1984, Patch and whole cell calcium currents recorded simultaneously in snail neurons, J. Gen. Physiol. 83:727–750.PubMedCrossRefGoogle Scholar
  36. Miller, C., 1978, Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties, J. Memb. Biol. 40:1–23.CrossRefGoogle Scholar
  37. Miller, C., 1984, Integral membrane channels: Studies in model membranes, Physiol. Rev. 63:1209–1242.Google Scholar
  38. Moczydlowski, E., 1985, Na-channel block by u-conotoxin GIIIA: A peptide toxin specific for skeletal muscle, Biophys. J. 47:190a.Google Scholar
  39. Mueller, P., and Rudin, D. O., 1969, Translocators in bimolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions, Curr. Top. Bioenerg. 3:157–249.Google Scholar
  40. Murphy, K. M. M., Gould, R. J., Largent, B. L., and Snyder, S., 1983, A unitary mechanism of calcium antagonist drug action, Proc. Natl. Acad. Sci. U.S.A. 80:860–864.PubMedCrossRefGoogle Scholar
  41. Nowycky, M. C., Fox, A. P., and Tsien, R. W., 1985, Novel mode of neuronal calcium channel gating and its promotion by the dihydropyridine calcium agonist Bay K 8644, Proc. Natl. Acad. Sci. U.S.A. 82:2178–2182.PubMedCrossRefGoogle Scholar
  42. Palade, P. T., and Almers, W., 1985, Slow calcium and potassium currents in frog skeletal muscle: Their relationship and pharmacological properties, Pflugers Arch, (in press).Google Scholar
  43. Reuter, H., 1983, Calcium channel modulation by neurotransmitters, enzymes and drugs, Nature 301:569–574.PubMedCrossRefGoogle Scholar
  44. Rosemblatt, M., Hidalgo, C., Vergara, C., and Ikemoto, I., 1981, Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle, J. Biol. Chem. 256:8140–8148.PubMedGoogle Scholar
  45. Sanchez, J. A., and Stefani, E., 1978, Inward calcium current in twitch muscle fibres of the frog, J. Physiol. 283:197–209.PubMedGoogle Scholar
  46. Schramm, M., Thomas, G., Towart, R., and Franckowiak, G., 1983, Novel dihydropyridines with positive ionotropic action through activation of Ca+2 channel, Nature 303:535–537.PubMedCrossRefGoogle Scholar
  47. Stanfield, P. R., 1977, A calcium dependent inward current in frog skeletal muscle fibres, Pflugers Arch. 368:267–270.PubMedCrossRefGoogle Scholar
  48. Towart, R., and Schramm, M., 1984, Recent advances in the pharmacology of the calcium channel, Trends Pharmacol. Sci. 5:111–113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Roberto Coronado
    • 1
  • Hubert Affolter
    • 1
  1. 1.Department of PharmacologyUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations