Gating of Batrachotoxin-Activated Sodium Channels in Lipid Bilayers

  • Robert J. French
  • Jennings F. WorleyIII
  • Marc B. Blaustein
  • William O. RomineJr.
  • Kenneth K. Tam
  • Bruce K. Krueger


Sodium channels incorporated into planar lipid bilayers share many fundamental properties with sodium channels in general and thus provide a useful system for the study of various aspects of channel behavior. Use of the steroidal alkaloid toxin batrachotoxin (BTX) was a crucial aid in making the first electrical recordings from voltage-dependent sodium channels incorporated into artificial lipid membranes from native membrane vesicles from rat brain (Krueger et al., 1983). Batrachotoxin has now been used to enable studies of sodium channels from other tissues (sarcolemma: Moczydlowski et al., 1984a, b; canine brain: Green et al., 1984) and of reconstituted, purified sodium channels from rat brain (Hartshorne et al., 1985). Rosenberg et al. (1984) have recently reported patch-clamp recordings from sodium channels, purified from eel electric organ and reconstituted into liposomes, using depolarizing voltage steps to transiently open the channels in the absence of BTX. However, the use of relatively large (100–200 μm) planar bilayers formed from decane-lipid solutions is at present the easiest and most reliable approach to making electrical recordings from sodium channels in a “reconstituted” system.


Sodium Channel Planar Lipid Bilayer Squid Giant Axon Fractional Open Time Planar Bilayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albuquerque, E. X., Daly, J. W., and Witkop, B., 1971, Batrachotoxin: Chemistry and pharmacology, Science 172:995–1002.PubMedCrossRefGoogle Scholar
  2. Andersen, O. S., 1983, Ion movement through gramicidin A channels. Single-channel measurements at very high potentials, Biophys. J. 41:119–133.PubMedCrossRefGoogle Scholar
  3. Cohen, F. S., Zimmerberg, J., and Finkelstein, A., 1980, Fusion of phospholipid vesicles with planar bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane, J. Gen. Physiol. 75:251–270.PubMedCrossRefGoogle Scholar
  4. Cohen, F. S., Akabas, M. H., and Finkelstein, A., 1982, Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane, Science 217:458–460.PubMedCrossRefGoogle Scholar
  5. Colquhoun, D., 1971, Lectures on Biostatistics. Clarendon Press, Oxford.Google Scholar
  6. Colquhoun, D., and Hawkes, A. G., 1981, On the stochastic properties of single ion channels, Proc. R. Soc. (Land.) [Biol.] 300:1-59.Google Scholar
  7. Colquhoun, D., and Hawkes, A. G., 1983, The principles of the stochastic interpretation of ion-channel mechanisms, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 135–175, Plenum Press, New York.CrossRefGoogle Scholar
  8. Colquhoun, D., and Sigworth F., 1983, Fitting and statistical analysis of single channel records, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 191–263, Plenum Press, New York.CrossRefGoogle Scholar
  9. Coronado, R., and Latorre, R., 1983, Phospholipid bilayers made from monolayers on patch-clamp pipettes, Biophys. J. 43:231–236.PubMedCrossRefGoogle Scholar
  10. Cruz, L. J., Gray, W. R., Olivera, B. M., Zeikus, R. D., Kerr, L., Yoshikami, D., and Moczydlowski, E., 1985, Conns geographus toxins that discriminate between neuronal and muscle sodium channels, J. Biol. Chem. 260:9280–9288.PubMedGoogle Scholar
  11. Dubois, J. M., Schneider, M. F., and Khodorov, B., 1983, Voltage dependence of intramembrane charge movement and conductance of batrachotoxin-modified sodium channels in frog node of Ranvier, J. Gen. Physiol. 81:829–844.PubMedCrossRefGoogle Scholar
  12. Fenwick, E. M., Marty, A., and Neher, E., 1982, Sodium and calcium channels in bovine chromaffin cells. J. Physiol. (Lond.) 331:559-635.Google Scholar
  13. Frace, A. M., Poznansky, M., Eaton, D. C., and Brodwick, M. S., 1985, Effects of phospholipid headgroup modification in voltage clamped squid giant axon, Biophys. J. 47:440a.Google Scholar
  14. Frankenhaeuser, B., and Hodgkin, A. L., 1957, The action of calcium on the electrical properties of squid axons, J. Physiol. (Lond.) 137:218-244.Google Scholar
  15. French, R. J., Worley, J. F. III, and Krueger, B. K., 1984, Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers, Biophys. J. 45:301–310.PubMedCrossRefGoogle Scholar
  16. Gration, K. A. F., Lambert, J. J., Ramsey, R., and Usherwood, P. N. R., 1981, Non-random openings and concentration-dependent lifetimes of glutamate-gated channels in muscle membrane, Nature 291:423–425.PubMedCrossRefGoogle Scholar
  17. Green, W. N., Weiss, L. B., and Andersen, O. S., 1984, Batrachotoxin-modified sodium channels in lipid bilayers, Ann. N.Y. Acad. Sci. 435:548–550.CrossRefGoogle Scholar
  18. Hahin, R., and Campbell, D. T., 1983, Simple shifts in the voltage dependence of sodium channel gating caused by divalent ions, J. Gen. Physiol. 82:785–805.PubMedCrossRefGoogle Scholar
  19. Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 82:240–244.PubMedCrossRefGoogle Scholar
  20. Hess, P., Lansman, J. B., and Tsien, R. W., 1984, Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists, Nature 311:538–544.PubMedCrossRefGoogle Scholar
  21. Hille, B., Woodhull, A. M., and Shapiro, B. I., 1975, Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions and pH, Phil. Trans. R. Soc. (Lond.) [Biol.] 270:301-318.Google Scholar
  22. Hodgkin, A. L., and Huxley, A. F., 1952a, Currents carried by sodium and potasium ions through the membrane of the giant axon of Loligo, J. Physiol. (Lond.) 116:449–472.Google Scholar
  23. Hodgkin, A. L., and Huxley, A. F., 1952b, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.) 117:500–544.Google Scholar
  24. Horn, R., and Lange, K., 1983, Estimating kinetic constants from single channel data, Biophys. J. 43:207–223.PubMedCrossRefGoogle Scholar
  25. Horn, R., and Vandenberg, C. A., 1984, Statistical properties of single sodium channels, J. Gen. Physiol. 84:505–534.PubMedCrossRefGoogle Scholar
  26. Horn, R., Vandenberg, C. A., and Lange, K., 1984, Statistical analysis of single sodium channels. Effects of N-bromoacetamide, Biophys. J. 45:323–335.PubMedCrossRefGoogle Scholar
  27. Huang, L. M., Moran, N., and Ehrenstein, G., 1982, Batrachotoxin modifies the gating kinetics of sodium channels in internally perfused neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 79:2082–2085.PubMedCrossRefGoogle Scholar
  28. Huang, L. M., Moran, N., and Ehrenstein, G., 1984, Gating kinetics of batrachotoxin-modified sodium channels in neuroblastoma cells determined from single channel measurements, Biophys. J. 45:313–322.PubMedCrossRefGoogle Scholar
  29. Iwasa, K., and Ehrenstein, G., 1985, Dimers of batrachotoxin-modified sodium channels, Biophys. J. 47:191a.Google Scholar
  30. Keller, B., Hartshorne, R., Talvenheimo, J., Caterall, W., and Montai, M., 1985, Channel gating kinetics of purified sodium channels modified by batrachotoxin in lipid bilayers, Biophys. J. 47:439a.Google Scholar
  31. Khodorov, B. I., 1978, Chemicals as tools to study nerve fiber sodium channels; Effects of batrachotoxin and some local anesthetics, in: Membrane Transport Processes, Vol. 2 (D. C. Tosteson, Y. A. Ovchinnikov, and R. Latorre, eds.), pp. 152–174, Raven Press, New York.Google Scholar
  32. Krueger, B. K., Ratzlaff, R. W., Strichartz, G. R., and Blaustein, M. P., 1979, Saxitoxin binding to synaptosomes, membranes, and solubilized binding sites from rat brain, J. Memb. Biol. 50:287–310.CrossRefGoogle Scholar
  33. Krueger, B. K., Worley, J. F. III, and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayers, Nature 303:172–175.PubMedCrossRefGoogle Scholar
  34. Marty, A., and Neher, E., 1983, Tight-seal whole-cell recording, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 107–122, Plenum Press, New York.CrossRefGoogle Scholar
  35. McLaughlin, S., 1977, Electrostatic potentials at membrane-solution interfaces, in: Current Topics in Membranes and Transport, Vol. 9 (F. Bronner and A. Kleinzeller, eds.) pp. 71–144, Academic Press, New York.Google Scholar
  36. Miller, C., 1978, Voltage-gated cation channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties, J. Membr. Biol. 40:1–23.PubMedGoogle Scholar
  37. Moczydlowski, E., and Latorre, R., 1983, Gating kinetics of Ca2+-activated K+ Channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent binding reactions, J. Gen. Physiol. 82:511–542.PubMedCrossRefGoogle Scholar
  38. Moczydlowski, E., Garber, S. S., and Miller, C., 1984a, Batrachotoxin-activated sodium channels in planar lipid bilayers: Competition of tetrodotoxin block by Na+, J. Gen. Physiol. 84:665–686.PubMedCrossRefGoogle Scholar
  39. Moczydlowski, E., Hall, S., Garber, S. S., Strichartz, G. R., and Miller, C., 1984b, Voltage-dependent blockade of muscle Na+ channels by guanidinium toxins: Effect of toxin charge, J. Gen. Physiol. 84:687–704.PubMedCrossRefGoogle Scholar
  40. Montai, M., and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties, Proc. Natl. Acad. Sci. U.S.A. 69:3561–3566.CrossRefGoogle Scholar
  41. Mueller, P., 1975, Membrane excitation through voltage-induced aggregation of channel precursors, Ann. N.Y. Acad. Sci. 264:247–264.PubMedCrossRefGoogle Scholar
  42. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C., 1963, Methods for formation of single bimolecular lipid membranes in aqueous solution, J. Phys. Chem. 67:534–535.Google Scholar
  43. Narahashi, T., Albuquerque, E. X., and Deguchi, T., 1971, Effects of batrachotoxin on the membrane potential and conductance of squid giant axons, J. Gen. Physiol. 58:54–70.PubMedCrossRefGoogle Scholar
  44. Neher, E., and Steinbach, J. H., 1978, Local anaesthetics transiently block currents through single acetylcholine-receptor channels, J. Physiol. (Lond.) 277:153–176.Google Scholar
  45. Patlak, J., and Ortiz, M., 1985, Slow currents through single sodium channels of the adult rat heart, J. Gen. Physiol. 86:89–104.PubMedCrossRefGoogle Scholar
  46. Patlak, J. B., Gration, K. A. F., and Usherwood, P. N. R., 1979, Single glutamate-activated channels in locust muscle, Nature 278:643–645.PubMedCrossRefGoogle Scholar
  47. Quandt, F. N., and Narahashi, T., 1982, Modification of single Na+ channels by batrochotoxin, Proc. Natl. Acad. Sci. U.S.A. 79:6732–6736.PubMedCrossRefGoogle Scholar
  48. Rosenberg, R. L., Tomiko, S. A., and Agnew, W. S., 1984, Single-channel properties of the reconstituted, voltage-regulated sodium channel from the electroplax of Electrophorus electricus, Proc. Natl. Acad. Sci. U.S.A. 81:5594–5598.CrossRefGoogle Scholar
  49. Sachs, F., 1983, Automated analysis of single channel records, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 265–285, Plenum Press, New York.CrossRefGoogle Scholar
  50. Sachs, F., Neil, J., and Barkakati, N., 1982, The automated analysis of single channel data, Pfluegers Arch. 395:331–340.CrossRefGoogle Scholar
  51. Schuerholz, T., and Schindler, H., 1983, Formation of lipid-protein bilayers by micropipette guided contact of two monolayers, FEBS Lett. 152:187–190.CrossRefGoogle Scholar
  52. Sigworth, F., 1983, Electronic design of the patch clamp, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 3–35, Plenum Press, New York.CrossRefGoogle Scholar
  53. Sigworth, F., and Neher, E., 1980, Single Na+ channel currents observed in cultured rat muscle cells, Nature 287:447–449.PubMedCrossRefGoogle Scholar
  54. Stimers, J. R., Bezanilla, F., and Taylor, R. E., 1985, Sodium channel activation in the squid giant axon. Steady state properties, J. Gen. Physiol. 85:65–82.PubMedCrossRefGoogle Scholar
  55. Suarez-Isla, B. A., Wan, K., Lindstrom, J., and Montai, M., 1983, Single channel recordings from purified acetylcholine receptors reconstituted in bilayers at the tip of patch pipets, Biochemistry 22:2319–2323.PubMedCrossRefGoogle Scholar
  56. Vandenberg, C., and Horn, R., 1984, Inactivation viewed through single sodium channels, J. Gen. Physiol. 84:535–564.PubMedCrossRefGoogle Scholar
  57. Weiss, L. B., Green, W. N., and Andersen, O. S., 1984, Single channel studies on the gating of batrachotoxin (BTX)-modified sodium channels in lipid bilayers, Biophys. J. 45:67a.Google Scholar
  58. Worley, J. F. III, French, R. J., and Krueger, B. K., 1985, Interactions of divalent ions with single sodium channels, Biophys. J. 47:439a.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Robert J. French
    • 1
  • Jennings F. WorleyIII
    • 2
  • Marc B. Blaustein
    • 2
  • William O. RomineJr.
    • 2
  • Kenneth K. Tam
    • 1
  • Bruce K. Krueger
    • 2
  1. 1.Department of BiophysicsUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Department of PhysiologyUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations