The Reconstituted Sodium Channel from Brain

  • Robert Hartshorne
  • Michael Tamkun
  • Mauricio Montal


The voltage-sensitive sodium channel mediates the inward sodium current during the depolarizing phase of an action potential. Because of its central role in impulse conduction, it has been the subject of extensive investigations by electrophysiological and biochemical techniques to understand its structure and function. Sodium channels have been solubilized in detergents and purified from eel electroplax (Agnew et al., 1978; Miller et al., 1983), rat muscle (Barchi et al., 1980; Barchi, 1983), chicken heart (Lombet and Lazdunski, 1984), and rat brain (Hartshorne and Catterall, 1981, 1984; Barhanin et al., 1983; Grishin et al., 1984). The only functional property of sodium channels that is measurable in detergent solution is the binding of certain sodium-channel-specific neurotoxins. Therefore, it is necessary to reconstitute the purified channel protein to establish that it is functionally intact. The reconstitution of the sodium channel purified from eel electroplax (Rosenberg et al., 1984a, b) and rat muscle (Weigele and Barchi, 1982; Tanaka et al., 1983) is described in the two preceding chapters. Reconstitution of purified sodium channels from rat brain has been reported by Hanke et al. (1984). This chapter describes the reconstitution into lipid vesicles (Talvenheimo et al., 1982; Tamkun et al., 1984) and planar lipid bilayers (Hartshorne et al., 1985) of sodium channels purified from rat brain and the measurement of sodium channel function in these two systems.


Sodium Channel Lipid Vesicle Planar Lipid Bilayer Scorpion Toxin Sodium Channel Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnew, W. S., Levinson, S. R., Brabson, J. S., and Raftery, M. A., 1978, Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes, Proc. Natl. Acad. Sci. U.S.A. 75:2606–2610.PubMedCrossRefGoogle Scholar
  2. Albuquerque, E. X., and Daly, J. W., 1976, Batrachotoxin: A selective probe for channels modulating sodium conductances in electrogenic membranes, in: The Specificity and Action of Animal, Bacterial, and Plant Toxins (P. Cuatrecasas, ed.), pp. 298-338, Chapman and Hall, London.Google Scholar
  3. Barchi, R. L., 1983, Protein components of the purified sodium channel from rat skeletal muscle sarcolemma, J. Neurochem. 40:1377–1385.PubMedCrossRefGoogle Scholar
  4. Barchi, R. L., Cohen, S. A., and Murphy, L. E., 1980, Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channel, Proc. Natl. Acad. Sci. U.S.A. 77:1306–1310.PubMedCrossRefGoogle Scholar
  5. Barhanin, J., Pauron, D., Lombet, A., Norman, R., Vijverberg, H., Giglio, J. R., and Lazdunski, M., 1983, Electrophysiological characterization, solubilization, and purification of the Tityus γ toxin receptor associated with the gating component of the Na+ channel from rat brain, EMBO J. 2:915–920.PubMedGoogle Scholar
  6. Beneski, D. A., and Catterall, W. A., 1980, Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin, Proc. Natl. Acad. Sci. U.S.A. 77:639–643.PubMedCrossRefGoogle Scholar
  7. Cahalan, M., and Begenisich, T., 1976, Sodium channel selectivity: Dependence on internal permeant ion concentration, J. Gen. Physiol. 68:111–125.PubMedCrossRefGoogle Scholar
  8. Catterall, W. A., 1976, Purification of a toxic protein from scorpion venom which activates the action potential Na+ ionophore, J. Biol. Chem. 251:5528–5536.PubMedGoogle Scholar
  9. Catterall, W. A., 1977, Membrane potential dependent binding of scorpion toxin to the action potential Na+ ionophore, J. Biol. Chem. 252:8660–8668.PubMedGoogle Scholar
  10. Catterall, W. A., 1980, Neurotoxins that act on voltage sensitive sodium channels in excitable membranes, Annu. Rev. Pharmacol. Toxicol. 20:15–43.PubMedCrossRefGoogle Scholar
  11. Catterall, W. A., Morrow, C. S., and Hartshorne, R. P., 1979, Neurotoxin binding to receptor sites associated with voltage-sensitive sodium channels in intact, lysed, and detergent solubilized brain membranes, J. Biol Chem. 254:11379–11387.PubMedGoogle Scholar
  12. Cohen, F. S., Akabas, M. H., and Finkelstein, A., 1982, Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane, Science 217:458–460.PubMedCrossRefGoogle Scholar
  13. Cohen, F. S., Akabas, M. H., Zimmerberg, J., and Finkelstein, A., 1984, Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes, J. Cell. Biol. 98:1054–1062.PubMedCrossRefGoogle Scholar
  14. Darbon, H., Jover, E., Couraud, F., and Rochat, H., 1983, Photoaffinity labeling of the α and β-scorpion toxin receptors associated with rat brain sodium channel, Biochem. Biophys. Res. Commun. 115:415-422.Google Scholar
  15. Drachev, L. A., Jasaitis, A. A., Koulen, A. D., Kondrashin, H. A. Liberman, E. A., Hayrecek, I. B., Ostroumov, S. A., Semenov, A. Y., and Skulachev, V. P., 1974, Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase, and bacteriorhodopsin, Nature 249:321–323.PubMedCrossRefGoogle Scholar
  16. Epstein, M., and Racker, E., 1978, Reconstitution of carbamylcholine-dependent sodium ion flux and desensization of the acetylcholine receptor from Torpedo californica, J. Biol. Chem. 253:6660–6662.Google Scholar
  17. Feller, D. J., Talvenheimo, J. A., and Catterall, W. A., 1984, Restoration of voltage dependent state change in the purified Na+ channel from rat brain, Soc. Neurosci. Abstr. 10:863.Google Scholar
  18. Feller, D. J., Talvenheimo, J. A., and Catterall, W. A., 1985, The sodium channel from rat brain: Reconstitution of scorpion toxin binding site in vesicles of defined lipid composition, J. Biol. Chem. 260:11542–11547.PubMedGoogle Scholar
  19. French, R. J., Worley, J. F., and Krueger, B. K., 1984, Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers, Biophys. J. 45:301–310.PubMedCrossRefGoogle Scholar
  20. Gasko, O. D., Knowles, A. F. Shertzer, H. G., Snolinna, E. M., and Racker, E., 1976, The use of ion-exchange resins for studying ion transport in biological systems, Anal. Biochem. 72:57–65.PubMedCrossRefGoogle Scholar
  21. Grishin, E. V., Kovalenko, V. A., Pashkov, V. N., and Shamotienko, O. G., 1984, Isolation and characterization of sodium channel components, Membr. Biochem. (U.S.S.R.) 1:858–867.Google Scholar
  22. Hanke, W., Boheim, G., Barhanin, J., Pauron, D., and Lazdunski, M., 1984, Reconstitution of highly purified saxitoxin-sensitive sodium channels into planar lipid bilayers, EMBO J. 3:509–515.PubMedGoogle Scholar
  23. Hartshorne, R. P., and Catterall, W. A., 1981, Purification of the saxitoxin receptor of the sodium channel from rat brain, Proc. Natl. Acad. Sci. U.S.A. 78:4620–4624.PubMedCrossRefGoogle Scholar
  24. Hartshorne, R. P., and Catterall, W. A., 1984, The sodium channel from rat brain: Purification and subunit composition, J. Biol. Chem. 259:1667–1675.PubMedGoogle Scholar
  25. Hartshorne, R. P., Messner, D. J., Coppersmith, J. C., and Catterall, W. A., 1982, The saxitoxin receptor of the sodium channel from rat brain: Evidence for two nonidentical β subunits, J. Biol. Chem. 257:13888–13891.PubMedGoogle Scholar
  26. Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 82:240–244.PubMedCrossRefGoogle Scholar
  27. Holloway, P. W., 1973, A simple procedure for removal of Triton X-100 from protein samples, Anal. Biochem. 53:304–308.PubMedCrossRefGoogle Scholar
  28. Huang, L. M., Catterall, W. A., and Ehrenstein, G., 1979, Comparison of ionic selectivity of batrachotoxin-activated channels with different tetrodotoxin dissociation constants, J. Gen. Physiol. 73:839–854.PubMedCrossRefGoogle Scholar
  29. Huang, L. M., Moran, N., and Ehrenstein, G., 1982, Batrachotoxin modifies the gating kinetics of sodium channels in internally perfused neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 79:2082–2085.PubMedCrossRefGoogle Scholar
  30. Huang, L. M., Moran, N., and Ehrenstein, G., 1984, Gating kinetics of batrochotoxin modified sodium channels in neuroblastoma cells determined from single channel measurements, Biophys, J. 45:313–322.CrossRefGoogle Scholar
  31. Khodorov, B. I., and Revenko, S. V., 1979, Further analysis of the mechanisms of action of batrachotoxin on the membrane of myelinated nerve, Neuroscience 4:1315–1330.PubMedCrossRefGoogle Scholar
  32. Koppenhöfer, E., and Schmidt, H., 1968, Die Wirkung von Scorpiongift auf die Ionenströme des Ranvierschen Schnürrings II. Unvollständige Natrium Inaktivierung, Pflüegers Arch. 303:150–161.CrossRefGoogle Scholar
  33. Kreuger, B. K., Worley, J. F., and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayer membranes, Nature 303:172–175.CrossRefGoogle Scholar
  34. Lombet, A., and Lazdunski, M., 1984, Characterization, solubilization, affinity labeling and purification of the cardiac Na+ channel using Tityus toxin 7, Eur. J. Biochem. 141:651–666.PubMedCrossRefGoogle Scholar
  35. Messner, D. J., and Catterall, W. A., 1985, The sodium channel from rat brain: Separation and characterization of subunits, J. Biol. Chem. 260:10597–10604.PubMedGoogle Scholar
  36. Miller, C., and Racker, E., 1976, Ca2+ induced fusion of fragmented sarcoplasmic reticulum with artificial bilayers, J. Membr. Biol. 30:283–300.PubMedCrossRefGoogle Scholar
  37. Miller, J. A., Agnew, W. S., and Levinson, S. R., 1983, Principal glycopeptide of the tetrodotoxin/ saxitoxin binding protein from Electrophorus electric us: Isolation and partial chemical and physical characterization, Biochemistry 22:462–470.PubMedCrossRefGoogle Scholar
  38. Moczydlowski, E., Garber, S. S., and Miller, C., 1984, Batrachotoxin-activated Na+ channels in planar lipid bilayers: Competition of tetrodotoxin block by Na+, J. Gen. Physiol. 84:687–704.PubMedCrossRefGoogle Scholar
  39. Mueller, P., and Rudin, D. O., 1969, Bimolecular lipid membranes: Techniques of formation, study of electrical properties and induction of gating phenomenon, in: Laboratory Techniques of Membrane Biophysics (M. Passow and R. Stampfli, eds.), pp. 141–156, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  40. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C., 1963, Methods for the formation of single bimolecular lipid membranes in aqueous solution, J. Phys. Chem. 67:534–535.Google Scholar
  41. Narahashi, T., Anderson, N. C., and Moore, J. W., 1966, Tetrodotoxin does not block excitation from inside the nerve membrane, Science 153:765–767.PubMedCrossRefGoogle Scholar
  42. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H. Raftery, M., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312:121–127.PubMedCrossRefGoogle Scholar
  43. Oakley, B. R., Kirsch, D. R., and Morris, N. R., 1980, A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels, Anal. Biochem. 105:361–363.PubMedCrossRefGoogle Scholar
  44. Quandt, F., and Narahashi, T., 1982, Modification of single Na+ currents by batrachotoxin, Proc. Natl. Acad. Sci. U.S.A. 79:6732–6736.PubMedCrossRefGoogle Scholar
  45. Redwood, W. R., Pfeiffer, F. R., Weisbach, J. A., and Thompson, T. E., 1971, Physical properties of bilayer membranes formed from a synthetic saturated phospholipid in n-decane, Biochim. Biophys. Acta 233:1–6.PubMedCrossRefGoogle Scholar
  46. Rosenberg, R. L., Tomiko, S. A., and Agnew, W. S., 1984a, Reconstitution of neurotoxin-modulated ion transport by the voltage-regulated sodium channel isolated from the electroplax of Electrophorus electricus, Proc. Natl. Acad. Sci. U.S.A. 81:1239–1243.CrossRefGoogle Scholar
  47. Rosenberg, R. L., Tomiko, S. A., and Agnew, W. S., 1984b, Single channel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax of Electrophorus electricus, Proc. Natl. Acad. Sci. U.S.A. 81:5594–5598.CrossRefGoogle Scholar
  48. Sharkey, R. G., Beneski, D. A., and Catterall, W. A., 1984, Differential labeling of the a and β, subunits of the sodium channel by photoreactive derivatives of scorpion toxin, Biochemistry 23:6078–6086.PubMedCrossRefGoogle Scholar
  49. Szoka, F., Jr., and Papahadjopoulos, D., 1980, Comparative properties and methods of preparation of lipid vesicles (liposomes), Annu. Rev. Biophys. Bioeng. 9:467–508.PubMedCrossRefGoogle Scholar
  50. Talvenheimo, J. A., Tamkun, M. M., and Catterall, W. A., 1982, Reconstitution of neurotoxin-stimulated sodium transport by the voltage-sensitive sodium channel purified from rat brain, J. Biol. Chem. 257:11868–11871.PubMedGoogle Scholar
  51. Tamkun, M. M., and Catterall, W. A., 1981a, Reconstitution of the voltage-sensitive sodium channel of rat brain from solubilized components, J. Biol. Chem. 256:11457–11463.PubMedGoogle Scholar
  52. Tamkun, M. M., and Catterall, W. A., 1981b, Ion flux studies of voltage-sensitive sodium channels in synaptic nerve ending particles, Mol. Pharmacol. 19:78–86.PubMedGoogle Scholar
  53. Tamkun, M. M., Talvenheimo, J. A., and Catterall, W. A., 1984, The sodium channel from rat brain:.Google Scholar
  54. Reconstitution of neurotoxin-activated ion flux and scorpion toxin binding from purified components, J. Biol. Chem. 259:1676-1688.Google Scholar
  55. Tanaka, J. C., Eccelston, J. F., and Barchi, R. L., 1983, Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma, J. Biol. Chem. 258:7519–7526.PubMedGoogle Scholar
  56. Weigele, J. B., and Barchi, R. L., 1982, Functional reconstitution of the purified sodium channel protein from rat sarcolemma, Proc Natl. Acad. Sci. U.S.A. 79:3651–3655.PubMedCrossRefGoogle Scholar
  57. Weiss, L. B., Green, W. N., and Andersen, O. S., 1984, Single channel studies on the gating of batrachotoxin modified sodium channels in lipid bilayers, Biophys. J. 45:67.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Robert Hartshorne
    • 1
  • Michael Tamkun
    • 2
  • Mauricio Montal
    • 1
  1. 1.Departments of Biology and PhysicsUniversity of California San DiegoLa JollaUSA
  2. 2.Carnegie Institute of WashingtonBaltimoreUSA

Personalised recommendations