Skip to main content

Skeletal Muscle Sodium Channels

Isolation and Reconstitution

  • Chapter
Ion Channel Reconstitution

Abstract

In mammalian muscle, a voltage-sensitive sodium channel controls the transient increase in membrane conductance that produces an action potential in the sarcolemma and T-tubular membranes. The time- and voltage-dependent characteristics of the currents regulated by this channel have been studied extensively over the past few decades, first using the traditional approach of voltage clamp (Adrian et al., 1970) and more recently at the single-channel level using patch-clamp technology (Sigworth and Neher, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, R. H., Chandler, W. K., and Hodgkin, A. L., 1970, Voltage clamp experiments in striated muscle fibers, J. Physiol. (Lond.) 208:607-644.

    Google Scholar 

  • Agnew, W. S., and Raftery, M. A., 1979, Solubilized tetrodotoxin binding component from the electroplax of Electrophorus electric us. Stability as a function of mixed lipid-detergent micelle composition, Biochemistry 18:1912–1919.

    Article  PubMed  CAS  Google Scholar 

  • Agnew, W. S., Levinson, S. R., Brabson, J. S., and Raftery, M. A., 1978, Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes, Proc. Natl. Acad. Sci. U.S.A. 75:2606–2610.

    Article  PubMed  CAS  Google Scholar 

  • Andreoli, T. E., Tieffenberg, M., and Tosteson, D. C., 1967, The effect of valinomycin on the ionic permeability of thin lipid membranes, J. Gen. Physiol. 50:2527–2545.

    Article  PubMed  CAS  Google Scholar 

  • Barchi, R. L., 1983, Protein components of the purified sodium channel from rat skeletal muscle sarcolemma, J. Neurochem. 40:1377–1385.

    Article  PubMed  CAS  Google Scholar 

  • Barchi, R. L., 1984, Voltage-sensitive Na+ ion channels: Molecular properties and functional reconstitution, Trends. Biochem. Sci. 9:358–361.

    Article  CAS  Google Scholar 

  • Barchi, R. L., and Murphy, L. E., 1980, Size characteristics of the solubilized sodium channel saxitoxin binding site from mammalian sarcolemma, Biochim. Biophys. Acta 597:391–398.

    Article  PubMed  CAS  Google Scholar 

  • Barchi, R. L., and Tanaka, J. C., 1984, Cation gating and selectivity in a purified, reconstituted, voltage-dependent sodium channel, Biophys. J. 45:35–37.

    Article  PubMed  CAS  Google Scholar 

  • Barchi, R. L., Weigele, J., Chalikian, D., and Murphy, L., 1979, Muscle surface membranes. Preparative methods affect apparent chemical properties and neurotoxin binding, Biochim. Biophys. Acta 550:59–76.

    Article  PubMed  CAS  Google Scholar 

  • Barchi, R. L., Cohen, S. A., and Murphy, L. E., 1980, Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channel, Proc. Natl. Acad. Sci. U.S.A. 77:1306–1310.

    Article  PubMed  CAS  Google Scholar 

  • Barchi, R. L., Tanaka, J. C., and Furman, R. F., 1984, Molecular characteristics and functional reconstitution of muscle voltage-sensitive sodium channels, J. Cell. Biochem 26:135–146.

    Article  PubMed  CAS  Google Scholar 

  • Barhanin, J., Pauron, D., Lombet, A., Norman, R. I., Vijverberg, P. M., Giglio, J. R., and Lazdunski, M., 1983, Electrophysiological characterization, solubilization and purification of the Tityus toxin receptor associated with the gating component of the Na+ channel from rat brain, EMBO J. 2:915–920.

    PubMed  CAS  Google Scholar 

  • Barhanin, J., Schmidt, A., Lombet, A., Wheeler, K. P., Lazdunski, M., and Ellory, J. C., 1984a, Molecular size of different neurotoxin receptors on the voltage-sensitive Na+ channel, J. Biol. Chem. 258:700–702.

    Google Scholar 

  • Barhanin, J., Ildefonse, M., Rougier, O., Sampaio, S. V., Giglio, J. R., and Lazdunski, M., 1984b, Tityus γ toxin, a high affinity effector of the Na+ channel in muscle, with a selectivity for channels in the surface membrane, Pflugers Arch. 400:22–27.

    Article  PubMed  CAS  Google Scholar 

  • Beneski, D. A., and Catterall, W. A., 1980, Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc. Natl. Acad. Sci. U.S.A. 77:639–643.

    Article  PubMed  CAS  Google Scholar 

  • Casadei, J. M., Gordon, R. D., Lampson, L. A., Shotland, D. L., and Barchi, R. L., 1984, Monoclonal antibodies against the voltage-sensitive Na+ channel from mammalian skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 81:6227–6231.

    Article  PubMed  CAS  Google Scholar 

  • Casadei, J. M., Gordon, R. D., and Barchi, R. L., 1985, Immunoaffinity purification of the voltage dependent sodium channel from mammalian skeletal muscle, J. Biol. Chem. (in press).

    Google Scholar 

  • Catterall, W. A., 1975, Activation of the action potential Na+ ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin, J. Biol. Chem. 250:4053–4059.

    PubMed  CAS  Google Scholar 

  • Catterall, W. A., 1977, Activation of the action potential Na+ ionophore by neurotoxins, J. Biol. Chem. 252:8669–8676.

    PubMed  CAS  Google Scholar 

  • Catterall, W. A., 1980, Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes, Annu. Rev. Pharmacol. Toxicol. 20:15–43.

    Article  PubMed  CAS  Google Scholar 

  • Fersht, A., and Jakes, R., 1975, Demonstration of two reaction pathways for the aminoacylation of tRNA. Application of the pulsed quenched flow technique, Biochemistry 14:3350–3356.

    Article  PubMed  CAS  Google Scholar 

  • Frelin, C., Vigne, P., and Lazdunski, M., 1981, The specificity of the sodium channel for monovalent cations, Eur. J. Biochem. 119:437–442.

    Article  PubMed  CAS  Google Scholar 

  • Frelin, D., Vigne, P., and Lazdunski, M., 1983, Na+ channels with high and low affinity tetrodotoxin binding sites in mammalian skeletal muscle cells, J. Biol. Chem. 258:7256–7259.

    PubMed  CAS  Google Scholar 

  • Gutfreund, H., 1969, Rapid mixing: Continuous flow, Methods Enzymol. 16:229–249.

    Article  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell free membrane patches. Pflugers. Arch. 391:85-100. Harris, J. B., and Thesleff, S., 1971, Studies on tetrodotoxin resistant action potentials in denervated skeletal muscle, Acta Physiol. Scand. 83:382–388.

    Google Scholar 

  • Hartshorne, R. P., and Catterall, W. A., 1981, Purification of the saxitoxin receptor of the sodium channel from rat brain, Proc. Natl. Acad. Sci. U.S.A. 78:4620–4624.

    Article  PubMed  CAS  Google Scholar 

  • Hartshorne, R. P., Messner, D. J., Coppersmith, J. C., and Catterall, W. A., 1982, The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical β subunits, J. Biol. Chem. 257:13888–13891.

    PubMed  CAS  Google Scholar 

  • Hartshorne, R., Keeler, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 82:240–244.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1972, The permeability of the sodium channel to metal catins in myelinated nerve, J. Gen. Physiol. 59:637–658.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer, Sunderland, MA.

    Google Scholar 

  • Hjelemeland, L. M., Nebert, D. W., and Osborne, J. C., Jr., 1983, Sulfobetaine derivatives of bile acids: Nondenaturing surfactants for membrane biochemistry, Anal. Biochem. 130:72–82.

    Article  Google Scholar 

  • Holloway, F. W., 1973, A simple procedure for removal of Triton X-100 from protein samples, Anal. Biochem 53:301–308.

    Article  Google Scholar 

  • Horn, R., Patlak, J., and Stevens, C. F., 1981, Sodium channels need not open before they inactivate, Nature 291:426–427.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L. M., Catterall, W. A., and Ehrenstein, G., 1979, Comparison of ionic selectivity of batrachotoxin-activated channels with different tetrodotoxin dissociation constants, J. Gen. Physiol. 73:839–854.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L. M., Moran, N., and Ehrenstein, G., 1982, Batrachotoxin modifies the gating kinetics of sodium channels in internally perfused neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 79:2082–2085.

    Article  PubMed  CAS  Google Scholar 

  • Jaimovich, E., Chicheportiche, R., Lombet, A., Lazdunski, M., Ildefonse, M., and Rougier, O., 1983, Differences in the properties of Na+ channels in muscle surface and t-tubular membranes revealed by tetrodotoxin derivatives, Pflugers. Arch. 397:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Khodorov, B. I., 1978, Chemicals as tools to study nerve fiber sodium channels; effects of batrachotoxin and some local anesthetics, in: Membrane Transport Processes, Vol. 2 (D. C. Tosteson, A. Y. Ovchennikov, and R. Latorre, eds.), pp. 153–174. Raven Press, New York.

    Google Scholar 

  • Kraner, S. D., Tanaka, J. C., Matesic, D. R., and Barchi, R. L., 1985, Purification and functional reconstitution of the voltage-sensitive sodium channel from rabbit T-tubular membranes, J. Biol. Chem. 260:6341–6347.

    PubMed  CAS  Google Scholar 

  • Krueger, B. K., Worley, J. F., and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayer membranes, Nature 303:172–175.

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz, M. D., Sutro, J. B., and Hille, B., 1985, Four lipid-soluble toxins modify sodium channel gating, Biophys. J. 47:32a.

    Google Scholar 

  • Miller, C., and Racker, E., 1979, Reconstitution of membrane transport functions, in: The Receptors, Vol. 1 (R. D. O’Brien, ed.), p. 16, Plenum Press, New York.

    Google Scholar 

  • Miller, J. A., Agnew, W. S., and Levinson, S. R., 1983, Principal glycopeptide of the tetrodotoxin saxitoxin binding protein from Electrophorus electricus: Isolation and partial chemical and physical characterization, Biochemistry 22:462–470.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, P., and Rudin, D. O., 1967, Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics, Biochem. Biophys. Res. Commun. 26:398–404.

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., 1974, Chemicals as tools in the study of excitable membranes, Physiol. Rev. 54:814–889.

    Google Scholar 

  • Noda, M., Shimizu, S., Tsutomu, T, Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, U., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Norman, R. I., Schmidt, A., Lombet, A., Barhanin, J., and Lazdunski, M., 1983, Purification of binding protein from Tityus toxin identified with the gating component of the voltage-sensitive Na+ channel, Proc. Natl. Acad. Sci. U.S.A. 80:4164–4168.

    Article  PubMed  CAS  Google Scholar 

  • Oku, N., Kendall, D. A., and Macdonald, R. C., 1982, Measurement of trapped space by calcein quenching and comparison with gramicidin measured spaces, Biochim. Biophys. Acta 691:332–340.

    Article  CAS  Google Scholar 

  • Pappone, P., 1980, Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibers, J. Physiol.(Lond.) 306:377-410.

    Google Scholar 

  • Quandt, F. N., and Narahashi, T., 1982, Modification of single Na+ channels by batrachotoxin, Proc. Natl. Acad. Sci. U.S.A. 79:6732–6736.

    Article  PubMed  CAS  Google Scholar 

  • Redfern, P., and Thesleff, S., 1971, Action potential generations in denervated rat skeletal muscle, Acta Physiol. Stand. 81:557–564.

    Article  CAS  Google Scholar 

  • Rhoden, V., and Goldin, S. M., 1979, Formation of unilamellarlipid vesicles of controllable dimensions by detergent dialysis, Biochemistry 18:4172–4176.

    Article  Google Scholar 

  • Rosemblatt, M., Hidalgo, C., Vergara, C., and Ikemoto, N., 1981, Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle, J. Biol. Chem. 256:8140–8148.

    PubMed  CAS  Google Scholar 

  • Rosenberg, R. L., Tomiko, S. A., and Agnew, W. S., 1984, Reconstitution of neurotoxin-modulated ion transport by the voltage-regulated sodium channel isolated from the electroplax of Electrophorus electricus, Proc. Natl. Acad. Sci. U.S.A. 81:1239-1243. Schauf, C. L., 1973, Temperature dependence of the ionic current kinetics of Myxicola giant axons, J. Physiol. (Lond.) 235:197–205.

    Google Scholar 

  • Sharkey, R. S., Beneski, D. A., and Catterall, W. A., 1983, Specific labeling of the a and β, subunits of the sodium channel by photoreactive derivatives of scorpion toxin, Biochemistry 23:6078–6086.

    Article  Google Scholar 

  • Sherman, S. J., Lawrence, J. C., Messner, D. J., Jacoby, K., and Catterall, W. A., 1983, Tetrodotoxinsensitive sodium channels in rat muscle cells developing in vitro, J. Biol. Chem. 258:2488–2495.

    CAS  Google Scholar 

  • Sigworth, F. J., and Neher, E., 1980, Single Na+ channel currents observed in cultured rat muscle cells, Nature 287:447–449.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, J. C., Eccleston, J. F., and Barchi, R. L., 1983, Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma, J. Biol. Chem. 258:7519–7526.

    PubMed  CAS  Google Scholar 

  • Tank, D. W., Miller, C., and Webb, W. W., 1982, Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax, Proc. Natl. Acad. Sci. U.S.A. 79:7749–7753.

    Article  CAS  Google Scholar 

  • Ulbricht, W., 1969, The effect of veratridine on excitable membranes of nerve and muscle, Ergeb. Physiol. Biol. Chem. Exp. Pharmacol. 61:18–71.

    Article  CAS  Google Scholar 

  • Weigele, J. B., and Barchi, R. L., 1982, Functional reconstitution of the purified sodium channel protein from rat sarcolemma, Proc. Natl. Acad. Sci. U.S.A. 79:3651–3655.

    Article  PubMed  CAS  Google Scholar 

  • Yoshi, M., Scruggs, V., and Narahashi, T., 1984, Effect of veratridine on single sodium channel currents, Soc. Neurosci. Abstr. 9:674.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tanaka, J.C., Furman, R.E., Barchi, R.L. (1986). Skeletal Muscle Sodium Channels. In: Miller, C. (eds) Ion Channel Reconstitution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1361-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1361-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1363-3

  • Online ISBN: 978-1-4757-1361-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics