Function of Acetylcholine Receptors in Reconstituted Liposomes

  • Mark G. McNamee
  • Owen T. Jones
  • Tung Ming Fong

Abstract

The nicotinic acetylcholine receptor (AChR) from the electric organ of various Torpedo species is the best-characterized neurotransmitter receptor and one of the best-characterized integral membrane proteins. The relative ease with which AChR can be isolated and purified from Torpedo californica electroplax in large quantities, coupled with the similarity between Torpedo AChR and mammalian skeletal muscle AChR, makes the Torpedo receptor an ideal model protein for studies of receptors, ion channels, and membrane proteins in general. The function of the AChR can be divided into four subfunctions, each of which reveals an intriguing facet of the receptor protein: (1) ligand recognition and binding; (2) coupling of ligand binding to a cation-specific ion channel; (3) cation permeation; and (4) desensitization, a complex process by which the ion channel is reversibly inactivated in the prolonged presence of activating ligands. Under normal physiological conditions, the acetylcholine-induced opening of AChR ion channels leads to a transient increase in cation permeability that results in membrane depolarization. The depolarization can ultimately lead to muscle contraction, signal conduction, or voltage changes depending on the tissues involved.

Keywords

Acetylcholine Receptor Agonist Binding Flux Response Boundary Lipid Reconstituted Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreasen, T. J., and McNamee, M. G., 1980, Inhibition of ion permeability control of acetylcholine receptor from Torpedo californica by long-chain fatty acids, Biochemistry 19:4719–4726.PubMedCrossRefGoogle Scholar
  2. Anholt, R., Lindstrom, J., and Montai, M., 1981, Stabilization of acetylcholine receptor channels by lipids in cholate solution and during reconstitution in vesicles, J. Biol. Chem. 256:4377–4387.PubMedGoogle Scholar
  3. Anholt, R., Fredkin, D. R., Deerinck, T., Ellisman, M., Montai, M., and Lindstrom, J., 1982, Incorporation of acetylcholine receptor into liposomes: Vesicle structure and acetylcholine receptor function, J. Biol. Chem. 257:7122–7134.PubMedGoogle Scholar
  4. Aoshima, H., 1984, A second, slow inactivation process in acetylcholine receptor-rich membrane vesicles prepared from Electrophorus electricus, Arch. Biochem. Biophys. 235:312–318.CrossRefGoogle Scholar
  5. Bangham, A., Hill, M. W., and Miller, N. G. A., 1974, Preparation and use of liposomes as models of biological membranes, Methods Membrane Biol. 1:1–68.CrossRefGoogle Scholar
  6. Barrantes, F. J., 1978, Agonist-mediated changes of the acetylcholine receptor in its membrane environment, J. Mol. Biol. 124:1–26.PubMedCrossRefGoogle Scholar
  7. Bernhardt, J., and Neumann, E., 1980, Analysis of gated flux from or into sealed membrane fragments, J. Theor.Biol. 86:649–661.PubMedCrossRefGoogle Scholar
  8. Blickenstaff, G. D., and Wang, H. H., 1985, The effects of spin labeled local anesthetics on acetylcholine receptor-mediated ion flux, Biophys. J. 47:261a.Google Scholar
  9. Bonner, R., Barrantes, F. J., and Jovin, T. M., 1976, Kinetics of agonist-induced intrinsic fluorescence changes in membrane-bound acetylcholine receptor, Nature 263:429–431.PubMedCrossRefGoogle Scholar
  10. Brotherus, J. R., Griffith, O. H., Brotherus, M. O., Jost, P. C., Silvius, J. R., and Hokin, L., 1981, Lipid-protein multiple binding equilibria in membranes, Biochemistry 20:5261–5267.PubMedCrossRefGoogle Scholar
  11. Cash, D. J., and Hess, G. P., 1980, Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes, Proc. Natl. Acad. Sci. U.S.A. 77:842–846.PubMedCrossRefGoogle Scholar
  12. Cash, D. J., and Hess, G. P., 1981, Quenched flow technique with plasma membrane vesicles: Acetylcholine receptor mediated transmembrane ion flux, Anal. Biochem. 112:39–51.PubMedCrossRefGoogle Scholar
  13. Changeux, J.-P., Devillers, T., and Chemovilli, P., 1984, Acetylcholine receptor: An allosteric protein, Science 225:1335–1345.PubMedCrossRefGoogle Scholar
  14. Comfurius, P., and Zwaal, R. F. A., 1977, The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography, Biochim. Biophys. Acta 488:36–42.PubMedCrossRefGoogle Scholar
  15. Criado, M., Eibl, H., and Barrantes, F. J., 1982, Effects of lipids on acetylcholine receptor. Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles, Biochemistry 21:3622–3629.PubMedCrossRefGoogle Scholar
  16. Criado, M., Eibl, H., and Barrantes, F. J., 1984, Functional properties of the acetylcholine receptor incorporated into model lipid membranes, J. Biol. Chem. 259:9188–9198.PubMedGoogle Scholar
  17. Delegeane, A. M., and McNamee, M. G., 1980, Independent activation of the acetylcholine receptor from Torpedo californicn at two sites, Biochemistry 19:890–895.PubMedCrossRefGoogle Scholar
  18. Deutsch, J. M., and Kelly, R. B., 1981, Lipids of synaptic vesicles: Relevance to the mechanism of membrane fusion, Biochemistry 20:378–385.PubMedCrossRefGoogle Scholar
  19. Devaux, P. H., 1983, ESR and NMR studies of lipid-protein interactions in membranes, in: Biological Magnetic Resonance, Vol. 5 (L. J. Berliner and J. Reubin, eds.), pp. 183–299, Plenum Press, New York.CrossRefGoogle Scholar
  20. Dionne, V. E., Steinbach, J. K., and Stevens, C. F., 1978, An analysis of the dose-response relationship at voltage-clamped frog neuromuscular junctions, J. Physiol. (Lond.) 281:421-444.Google Scholar
  21. Dunn, S. M. J., and Raftery, M. A., 1982, Activation and desensitization of Torpedo acetylcholine receptor: Evidence for separate binding sites, Proc. Natl. Acad. Sci. U.S.A. 79:6757–6761.PubMedCrossRefGoogle Scholar
  22. Earnest, J. P., Wang, H.H., and McNamee, M. G., 1984, Multiple binding sites for local anesthetics on reconstituted acetylcholine receptor membranes, Biochem. Biophys. Res. Commun. 123:862–868.PubMedCrossRefGoogle Scholar
  23. East, J. M., and Lee, A. G., 1982, Lipid selectivity of the calcium and magnesium ion dependent adenosinetriphosphatase, studied with fluorescence quenching by a brominated phospholipid, Biochemistry 21:4144–4151.PubMedCrossRefGoogle Scholar
  24. Eldefrawi, M. E., Eldefrawi, A. T., Mansour, N. A., Daly, J. W., Witkop, B., and Albuquerque, E. X., 1978, Acetylcholine receptor and ionic channel of Torpedo electroplax: Binding of perhydrohistrionicotoxin to membrane and solubilized preparation, Biochemistry 17:5474–5484.PubMedCrossRefGoogle Scholar
  25. Ellena, J. F., Blazing, M. A., and McNamee, M. G., 1983, Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor, Biochemistry 22:5523–5535.PubMedCrossRefGoogle Scholar
  26. Elliott, J., and Raftery, M. A., 1979, Binding of perhydrohistrionicotoxin to intact and detergentsolubilized membranes enriched in nicotinic acetylcholine receptor, Biochemistry 18:1868–1874.PubMedCrossRefGoogle Scholar
  27. Epstein, M., and Racker, E., 1978, Reconstitution of carbamylcholine-dependent sodium ion flux and desensitization of the acetylcholine receptor from Torpedo californica, J. Biol. Chem. 253:6660–6662.Google Scholar
  28. Fersht, A. R., and Jakes, R., 1975, Determination of two reaction pathways for the aminoacylation of tRNA: Application of the pulsed quenched flow technique, Biochemistry 14:3350–3356.PubMedCrossRefGoogle Scholar
  29. Finer-Moore, J., and Stroud, R. M., 1984, Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81:155–159.PubMedCrossRefGoogle Scholar
  30. Fong, T. M., and McNamee, M. G., 1985, Correlation between acetylcholine receptor function and structural properties of membranes, Biochemistry (in press).Google Scholar
  31. Gaffney, B. J., and Chen, S. C., 1977, Spin-label studies of membranes, in: Methods in Membrane Biology, Vol. 8 (E. D. Korn, ed.), pp. 291-358, Plenum Press, New York.Google Scholar
  32. Gonzalez-Ros, J. M., Paraschos, A., and Martinez-Carrion, M., 1980, Reconstitution of functional membrane-bound acetylcholine receptor from isolated Torpedo californica receptor protein and electroplax lipids, Proc. Natl. Acad. Sci. U.S.A. 77:1796–1800.PubMedCrossRefGoogle Scholar
  33. Gonzalez-Ros, J. M., Paraschos, A., Farach, M. C., and Martinez-Carrion, M., 1981, Characterization of acetylcholine receptor isolated from Torpedo californica elecroplax through the use of an easily removable detergent, B-D-octylglucopyranoside, Biochim. Biophys. Acta 643:407–420.PubMedCrossRefGoogle Scholar
  34. Gonzalez-Ros, J. M., Llanillo, M., Paraschos, A., and Martinez-Carrion, M., 1982, Lipid environment of acetylcholine receptor from Torpedo californica, Biochemistry 21:3467–3473.CrossRefGoogle Scholar
  35. Gonzalez-Ros, J. M., Farach, M., and Martinez-Carrion, M., 1983, Ligand-induced effects at regions of acetylcholine receptor accessible to membrane lipids, Biochemistry 22:3807–3811.PubMedCrossRefGoogle Scholar
  36. Haggerty, J. G., and Froehner, S. C., 1981, Restoration of 125I-α-bungarotoxin binding activity to the α-subunit of Torpedo acetylcholine receptor isolated by gel electrophoresis in sodium dodecyl sulfate, J. Biol. Chem. 256:8296–8297.Google Scholar
  37. Heidmann, T., and Changeux, J.-P., 1979, Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata, Eur. J. Biochem. 94:255–279.CrossRefGoogle Scholar
  38. Heidmann, T., and Changeux, J.-P., 1984, Time resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformations, Proc. Natl. Acad. Sci. U.S.A. 81:1897–1901.PubMedCrossRefGoogle Scholar
  39. Heidmann, T., Bernhardt, J., Neumann, E., and Changeux, J.-P., 1983a, Rapid kinetics of agonist binding and permeability response analyzed in parallel on acetylcholine receptor rich membranes from Torpedo marmorata, Biochemistry 22:5452–5459.CrossRefGoogle Scholar
  40. Heidmann, T., Oswald, R. E., and Changeux, J.-P., 1983b, Multiple sites of action for noncompetitive blockers on acetylcholine receptor rich membrane fragments from Torpedo marmorata, Biochemistry 22:3112–3127.CrossRefGoogle Scholar
  41. Helenius, A., McCaslin, D. R., Fries, E., and Tanford, C., 1979, Properties of detergents, Methods Enzymol. 56:734–749.PubMedCrossRefGoogle Scholar
  42. Hess, G. P., Pasquale, E. B., Walker, J. W., and McNamee, M. G., 1982, Comparison of acetylcholine receptor-controlled cation flux in membrane vesicles from Torpedo californica and Electrophorus electricus: Chemical kinetic measurement in the milliseconds region, Proc. Natl. Acad. Sci. U.S.A. 79:963–967.PubMedCrossRefGoogle Scholar
  43. Hess, G. P., Cash, D. J., and Aoshima, H., 1983, Acetylcholine receptor controlled ion translocation: Chemical kinetic investigations of the mechanism, Annu. Rev. Biophys. Bioeng. 12:443–473.PubMedCrossRefGoogle Scholar
  44. Hess, G. P., Kolb, H.-A., Lauger, P., Schoffeniels, E., and Schwarze, W., 1984, Acetylcholine receptor (from E. electricus): A comparison single channel current recordings and chemical kinetics measurements, Proc. Natl. Acad. Sci. U.S.A. 81:5281–5285.PubMedCrossRefGoogle Scholar
  45. Hilden, S., and Hokin, L., 1976, Coupled Na+-K+ transport in vesicles containing a purified (Na K)ÅTPase and only phosphatidylcholine, Biochem. Biophys. Res. Commun. 69:521–527.PubMedCrossRefGoogle Scholar
  46. Holloway, P. W., 1973, A simple procedure for removal of Triton-X-100 from protein samples, Anal. Biochem. 53:304–308.PubMedCrossRefGoogle Scholar
  47. Hopfer, U., 1978, Isolated membrane vesicles as tools for analysis of epithelial transport, Am. J. Physiol. 233:E445-E449.Google Scholar
  48. Houslay, M. D., Warren, G. B., Birdsall, N. J. M., and Metcalfe, J. C., 1975, Lipid phase transitions control β-hydroxybutyrate dehydrogenase activity in defined-lipid protein complexes, FEBS Lett. 51:146–150.PubMedCrossRefGoogle Scholar
  49. Huang, C.-H., 1969, Studies on phosphatidylcholine vesicles. Formation and physical characteristics, Biochemistry 8:344–352.PubMedCrossRefGoogle Scholar
  50. Huganir, R. L., and Racker, E., 1982, Properties of proteoliposomes reconstituted with acetylcholine receptor from Torpedo californica, J. Biol. Chem. 257:9372–9378.Google Scholar
  51. Huganir, R. L., Schnell, M. A., and Racker, E., 1979, Reconstitution of the purified acetylcholine receptor from Torpedo californica, FEBS Lett. 108:155–160.CrossRefGoogle Scholar
  52. Jost, P. C., Griffith, O. H., Capaldi, R. A., and Vanderkooi, G., 1973, Evidence for boundary lipid in membranes, Proc. Natl. Acad. Sci. U.S.A. 70:480–484.PubMedCrossRefGoogle Scholar
  53. Jost, P. C., Nadakavukaren, K. K., and Griffith, O. H., 1977, Phosphatidylcholine exchange between the boundary lipid and bilayer lipid domains in cytochrome oxidase containing membranes, Biochemistry 16:3110–3114.PubMedCrossRefGoogle Scholar
  54. Kagawa, Y., and Racker, E., 1971, Partial resolution of the enzymes catalyzing oxidative phosphorylation, J. Biol. Chem. 246:5477–5487.Google Scholar
  55. Kaneda, N., Tanaka, F., Kohno, M., Hayashi, K., and Yagi, K., 1982, Change in the intrinsic fluorescence of acetylcholine receptor from Narke japonica upon binding with cholinergic ligands, Arch. Biochem. Biophys. 218:376–383.PubMedCrossRefGoogle Scholar
  56. Karpen, J. W., Sachs, A. B., Cash, D. J., Pasquale, E. B., and Hess, G. P., 1983, Direct spectrophotometric detection of cation flux in membrane vesicles: Stopped-flow measurements of acetylcholine receptor-mediated ion flux, Anal. Biochem. 135:83–94.PubMedCrossRefGoogle Scholar
  57. Katz, B., and Thesleff, S., 1957, A study of the desensitization produced by acetylcholine at the motor end plate, J. Physiol. (Land.) 138:63-80.Google Scholar
  58. Kilian, P., Dunlap, C., Mueller, P., Schell, M. A., Huganir, R., and Racker, E., 1980, Reconstitution of acetylcholine receptor from Torpedo californica with highly purified phospholipids: Effect of α-tocopherol, phylloquinone and other terpenoid quinones, Biochem. Biophys. Res. Commun. 93:409–414.PubMedCrossRefGoogle Scholar
  59. Laemmli, U. K., 1970, Cleavage of structural proteins during assembly of the head of bacteriophage T4, Nature 277:680–682.CrossRefGoogle Scholar
  60. Lakowicz, J. R., 1983, Principles of Fluorescence Spectroscopy, Plenum Press, New York.CrossRefGoogle Scholar
  61. Lee, A. G., 1982, Membrane studies using fluorescence spectroscopy, in: Techniques in the Life SciencesLipid and Membrane Biochemistry, B422, (T. R. Hesketh, H. L. Kornberg, J. C. Metcalfe, C. H. Northcote, C. I. Pogson, and K. F. Tipton, eds.), pp. 1–49, Elsevier, Amsterdam.Google Scholar
  62. Lee, A. G., 1983, Lipid phase transitions and mixtures, in: Membrane Fluidity in Biology, Vol. 2, General Principles (R. C. Aloia, ed.), pp. 43-88, Academic Press, New York.Google Scholar
  63. Letters, R., 1964, The application of a two dimensional paper Chromatographic technique to the analysis of phospholipids, Biochem. J. 93:313–316.PubMedGoogle Scholar
  64. Lichtenberg, D., Freire, E., Schmidt, C. F., Barenholz, Y., Feigner, P. L., and Thompson, T. E., 1981, Effect of surface curvature on solubility, thermodynamic behavior, and osmotic activity of dipalmitoylphosphatidylcholine single lamellar vesicles, Biochemistry 20:3462–3467.PubMedCrossRefGoogle Scholar
  65. Lindstrom, J., Anholt, R., Einarson, B., Engle, A., Osame, M., and Montai, M., 1980, Purification of acetylcholine receptor and reconstitution into lipid vesicles and study of agonist-induced cation channel regulation, J. Biol. Chem. 255:8340–8350.PubMedGoogle Scholar
  66. London, E., and Feigenson, G. W., 1981, Fluorescence quenching in model membranes. 2. Determination of the local lipid environment of the calcium adenosine triphosphatase from sarcoplasmic reticulum, Biochemistry 20:1939–1948.PubMedCrossRefGoogle Scholar
  67. Lymn, R. W., and Taylor, E. W., 1970, Transient state phosphate production in the hydrolysis of nucleotide triphosphates by myosin, Biochemistry 9:2975–2983.PubMedCrossRefGoogle Scholar
  68. Marsh, D., 1981, Electron spin resonance: Spin labels, in: Membrane Spectroscopy (E. Grell, ed.), pp. 51-142, Springer-Verlag, Berlin.Google Scholar
  69. Marsh, D., and Barrantes, F. J., 1978, Immobilized lipid in acetylcholine receptor rich membranes from Torpedo marmorata, Proc. Natl. Acad. Sci. U.S.A. 75:4329–4333.CrossRefGoogle Scholar
  70. Martinez-Carrion, M., Gonzalez-Ros, J. M., Mattingly, J. R., Ferragut, J. A., Farach, M. C., and Donneley, D., 1984, Fluorescence probes for the studies of acetylcholine receptor function, Biophys. J. 45:141–143.PubMedCrossRefGoogle Scholar
  71. McNamee, M. G., and Ochoa, E. L. M., 1982, Reconstitution of acetylcholine receptor function in model membranes, Neuroscience 7:2305–2319.PubMedCrossRefGoogle Scholar
  72. Miller, C., and Racker, E., 1979, Reconstitution of membrane transport functions, in: The Receptors, Vol. 1 (R. D. O’Brien, ed.), pp. 1-31, Plenum Press, New York.Google Scholar
  73. Milsmann, M. H. W., Schwendener, R. A., and Weder, H.-G., 1978, The preparation of large single bilayer liposomes by a fast and controlled dialysis, Biochim. Biophys. Acta 512:147–155.PubMedCrossRefGoogle Scholar
  74. Mimms, L., Zampighi, G., Nozaki, Y., Tanford, C., and Reynolds, J. A., 1981, Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside, Biochemistry 20:833–840.PubMedCrossRefGoogle Scholar
  75. Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., and Numa, S., 1984, Expression of functional acetylcholine receptor from cloned cDNAs, Nature 307:604–608.PubMedCrossRefGoogle Scholar
  76. Moore, H.-P. H., and Raftery, M. A., 1980, Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance, Proc. Natl. Acad. Sci. U.S.A. 77:4509–4513.PubMedCrossRefGoogle Scholar
  77. Neubig, R. R., and Cohen, J. B., 1980, Permeability control by cholingeric receptors in Torpedo postsynaptic membranes: Agonist dose response relations measured at second and millisecond times, Biochemistry 19:2770–2779.PubMedCrossRefGoogle Scholar
  78. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983, Structural homology of Torpedo californica acetylcholine receptor subunits, Nature 302:528–531.PubMedCrossRefGoogle Scholar
  79. Nozaki, Y., Lasic, D. D., Tanford, C., and Reynolds, J. A., 1982, Size analysis of phospholipid vesicle preparations, Science 217:366–376.PubMedCrossRefGoogle Scholar
  80. Ochoa, E. L. M., Dalziel, A. W., and McNamee, M. G., 1983, Reconstitution of acetylcholine receptor function in lipid vesicles of defined composition, Biochim. Biophys. Acta 727:151–162.PubMedCrossRefGoogle Scholar
  81. Olson, F., Hunt, C. A., Szoka, F. C., Vail, W. J., and Papahadjopoulos, D., 1979, Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes, Biochim. Biophys. Acta 557:9–23.PubMedCrossRefGoogle Scholar
  82. Oswald, R., and Changeux, J.-P., 1981, Ultraviolet light induced labelling by noncompetitive blockers of the acetylcholine receptor from Torpedo marmorata, Proc. Natl. Acad. Sci. U.S.A. 78:3925–3929.CrossRefGoogle Scholar
  83. Oswald, R., Heidmann, T., and Changeux, J.-P., 1983, Multiple affinity states for noncompetitive blockers revealed by [3H]phencyclidine binding to acetylcholine receptor rich membrane fragments from Torpedo marmorata, Biochemistry 22:3128–3136.CrossRefGoogle Scholar
  84. Palma, A., Herz, J., Wang, H. H., and Taylor, P., 1985, The binding of a spin-labeled local anesthetic to acetylcholine receptor at an allosteric site, Biophys. J. 47(2):258a.Google Scholar
  85. Popot, J.-L., and Changeux, J.-P., 1984, Nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein, Physiol. Rev. 64:1162–1239.PubMedGoogle Scholar
  86. Popot, J.-L., Demel, R. A., Sobel, A., van Deenan, L. L. M., and Changeux, J.-P., 1978, Interaction of the acetylcholine (nicotinic) receptor protein from Torpedo marmorata electric organ with monolayers of pure lipids, Ear. J. Biochem. 85:27–42.CrossRefGoogle Scholar
  87. Popot, J.-L., Cartaud, J., and Changeux, J.-P., 1981, Reconstitution of a functional acetylcholine receptor. Incorporation into artificial lipid vesicles and pharmacology of the agonist-controlled permeability changes, Eur. J. Biochem. 118:203–214.PubMedCrossRefGoogle Scholar
  88. Prinz, H., and Maelicke, A., 1983a. Interaction of cholinergic ligands with purified acetylcholine receptor protein. I. Equilibrium binding studies, J. Biol. Chem. 258:10263-10271.Google Scholar
  89. Prinz, H., and Maelicke, A., 1983b, Interaction of cholinergic ligands with the purified acetylcholine receptor protein. II. Kinetic studies, J. Biol. Chem. 258:10273–10182.PubMedGoogle Scholar
  90. Quast, U., Schimerlik, M., Lee, T., Witzemann, V., Blanchard, S., and Raftery, M. A., 1978, Ligandinduced conformation changes in Torpedo californica membrane-bound acetylcholine receptor, Biochemistry 17:2405–2414.PubMedCrossRefGoogle Scholar
  91. Rabon, E. C., and Sachs, G., 1981, Thallium interaction with the gastric (K, H)-ATPase, J. Membr. Biol. 62:19–27.PubMedCrossRefGoogle Scholar
  92. Racker, E., 1972, Reconstitution of cytochrome oxidase vesicles and conferral of sensitivity to energy transfer inhibitors, J. Membr. Biol. 10:221–235.PubMedCrossRefGoogle Scholar
  93. Ramseyer, G. O., Morrison, G. H., Aoshima, H., and Hess, G. P., 1981, Vidicon flame emission spectroscopy of Li+, Na+, and K+ fluxes mediated by acetylcholine receptor in Electrophorus electricus membrane vesicles, Anal. Biochem. 115:34–41.PubMedCrossRefGoogle Scholar
  94. Reynolds, J. A., 1982, Interactions between protein and amphiliphiles, in: Lipid-Protein Interactions, vol. 2 (P. C. Jost and O. H. Griffith, eds.), pp. 193–224, John Wiley & Sons, New York.Google Scholar
  95. Reynolds, J. A., Nozaki, Y., and Tanford, C., 1983, Gel exclusion chromatography on S-1000 Sephacryl: Application to phospholipid vesicles, Anal. Biochem. 130:471–474.PubMedCrossRefGoogle Scholar
  96. Sakmann, B., Patlak, J., and Neher, E., 1980, Single acetylcholine activated channels show burst kinetics in the presence of desensitizing concentrations of agonist, Nature 286:71–73.PubMedCrossRefGoogle Scholar
  97. Sandermann, H., 1982, Lipid-dependent membrane enzymes: A kinetic model for cooperative activation in the absence of cooperativity in lipid binding, Eur. J. Biochem. 127:123–128.PubMedCrossRefGoogle Scholar
  98. Sator, V., Gonzalez-Ros, J. M., Calvo-Fernandez, P., and Martinez-Carrion, M., 1979, Pyrenesulfonyl azide: A marker of acetylcholine receptor subunits in contact with the membrane hydrophobic environment, Biochemistry 18:1200–1206.PubMedCrossRefGoogle Scholar
  99. Schiebler, W., and Hucho, F., 1978, Membranes rich in acetylcholine receptor: Characterization and reconstitution to excitable membranes from exogenous lipids, Eur. J. Biochem. 85:55–63.PubMedCrossRefGoogle Scholar
  100. Schmidt, J., and Raftery, M. A., 1973, A simple assay for the study of solubilized acetylcholine receptor, Anal. Biochem. 52:349–354.PubMedCrossRefGoogle Scholar
  101. Sha’afi, R. I., and Fernandez, S. M., (eds.), 1983, Fast Methods in Physical Biochemistry and Cell Biology, Elsevier, Amsterdam.Google Scholar
  102. Simmonds, A. C., East, J. M., Jones, O. T., Rooney, E. K., McWhirter, J., and Lee, A. G., 1982, Annular and non-annular binding sites on the (Ca2+, Mg2+)-ATPase, Biochim. Biophys. Acta 693:398–406.PubMedCrossRefGoogle Scholar
  103. Sobel, A., Heidmann, T., Cartaud, J., and Changeux, J.-P., 1980, Reconstitution of functional acetylcholine receptor. Polypeptide chains, ultrastructure and binding sites for acetylcholine and local anesthetics, Eur. J. Biochem. 110:13–33.PubMedCrossRefGoogle Scholar
  104. Taylor, P., Brown, R. D., and Johnson, D. A., 1983, The linkage between ligand occupation and response of the nicotinic acetylcholine receptor, in: Current Topics in Membranes and Transport, Vol. 18, Membrane Receptors (A. Kleingeller and B. R. Martin, ed.), pp. 407-444, Academic Press, New York.Google Scholar
  105. Tzartos, S. J., and Changeux, J.-P., 1984, Lipid-dependent recovery of α-bungarotoxin and monoclonal antibody binding to the purified α-subunit from Torpedo marmorata acetylcholine receptor, J. Biol. Chem. 259:11512–11519.PubMedGoogle Scholar
  106. Ueno, M., Tanford, C., and Reynolds, J. A., 1984, Phospholipid vesicle formation using non-ionic detergents with low monomer solubility. Kinetic factors determine vesicle size and permeability, Biochemistry 23:3070–3076.PubMedCrossRefGoogle Scholar
  107. Walker, J. W., Lukas, R. J., and McNamee, M. G., 1981, Effects of thio-group modifications on the ion permeability control and ligand binding properties of Torpedo californica acetylcholine receptor, Biochemistry 20:2191–2199.PubMedCrossRefGoogle Scholar
  108. Walker, J. W., Takeyasu, K., and McNamee, M. G., 1982, Activation and desensitization kinetics of Torpedo californica acetylcholine receptor in reconstituted membranes, Biochemistry 21:5384–5389.PubMedCrossRefGoogle Scholar
  109. Walker, J. W., Richardson, C. A., and McNamee, M. G., 1984, Effects of thio-group modifications of Torpedo californica acetylcholine receptor on ion flux activation and inactivation kinetics, Biochemistry 23:2329–2338.PubMedCrossRefGoogle Scholar
  110. Warren, G. B., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C., 1974, Lipid substitution: The investigation of functional complexes of single species of phospholipid and a purified calcium transport protein, in: Membrane Proteins in Transport and Phosphorylation (G. F. Azzione, M. E. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), pp. 1–12, North-Holland, Amsterdam.Google Scholar
  111. Weber, M., and Changeux, J.-P., 1974, Binding of Naja nigricollis [3H]alpha-toxin to membrane fragments from Electrophorus and Torpedo organs: Effect of cholinergic agonists and antagonists on the binding of tritiated alpha-neurotoxin, Mol. Pharmacol. 10:15–34.PubMedGoogle Scholar
  112. Weber, M., David-Pfeuty, T., and Changeux, J.-P., 1975, Regulation of binding properties of the nicotinic receptor protein by cholinergic ligands in membrane fragments from Torpedo marmorata, Proc. Natl. Acad. Sci. U.S.A. 72:3443–3447.CrossRefGoogle Scholar
  113. Weiland, G., Georgia, B., Lappi, S., Schnell, C. F., and Taylor, P., 1977, Kinetics of agonist-mediated transitions in state of the cholinergic receptor, J. Biol. Chem. 252:7648–7656.PubMedGoogle Scholar
  114. Wu, W. C.-S., and Raftery, M. A., 1981, Reconstitution of acetylcholine receptor function using purified receptor protein, Biochemistry 20:694–701.PubMedCrossRefGoogle Scholar
  115. Wu, W. C.-S., Moore, H.-P. H., and Raftery, M. A., 1981, Quantitation of cation transport by reconstituted membrane vesicles containing acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 78:775–779.PubMedCrossRefGoogle Scholar
  116. Yager, P., Chang, E. L., Williams, R. W., and Dalziel, A. W., 1984, The secondary structure of acetylcholine receptor reconstituted in a single lipid component as determined by Raman spectroscopy, Biophys. J. 45:26–28.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Mark G. McNamee
    • 1
  • Owen T. Jones
    • 1
  • Tung Ming Fong
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of CaliforniaDavisUSA

Personalised recommendations