The Physical Nature of Planar Bilayer Membranes

  • Stephen H. White


A major part of the general strategy for defining the structure-function relationships of ion channels is to reconstitute isolated channel proteins into planar lipid bilayer membranes separating two aqueous compartments. In principle, this part of the strategy allows one to manipulate the lipid and aqueous environments of the protein to elucidate their roles in channel assembly and function in vivo. Its success depends on how well one can use the natural physicochemical behavior of the bilayer system to control the reconstitution process and the composition and properties of the lipid bilayer itself. Consequently, the serious student of reconstitution must come to terms with the physical chemistry of these bilayers variously referred to as planar lipid bilayers, black lipid membranes, or thin lipid films.


Contact Angle Bilayer Membrane Lipid Bilayer Membrane Phase Rule Planar Bilayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson, A. W., 1967, Physical Chemistry of Surfaces, ed. 2, Wiley-Interscience, New York.Google Scholar
  2. Andrews, D. M., 1970, Dissertation, Cambridge University, Cambridge.Google Scholar
  3. Andrews, D. M., Manev, E. D., and Haydon, D. A., 1970, Composition and energy relationships for some thin lipid films, and the chain conformation in monolayers at liquid-liquid interfaces, Special Disc. Faraday Soc. 1:46–56.CrossRefGoogle Scholar
  4. Aveyard, R., and Haydon, D. A., 1973, An Introduction to the Principles of Surface Chemistry, Cambridge University Press, New York.Google Scholar
  5. Bangham, A. D., 1980, Development of the liposome concept, in: Liposomes in Biological Systems (G. Gregoriadis and A. C. Allison, eds.), pp. 1–24, John Wiley & Sons, New York.Google Scholar
  6. Bangham, A. D., Hill, M. W., and Miller, N. G. A., 1974, Preparation and use of liposomes as models of biological membranes, in: Methods in Membrane Biology, Vol. 1 (E. D. Korn, ed.), pp. 1–68, Plenum Press, New York.CrossRefGoogle Scholar
  7. Benz, R., and Janko, K., 1976, Voltage-induced capacitance relaxation of lipid bilayer membranes, effects of membrane composition, Biochim. Biophys. Acta 455:721–738.PubMedCrossRefGoogle Scholar
  8. Boheim, G., Hanke, W., and Eibl, H., 1980, Lipid phase transition in planar bilayer membrane and its effect on carrier-and pore-mediated ion transport, Proc. Natl. Acad. Sci. USA 77:3403–3407.PubMedCrossRefGoogle Scholar
  9. Brooks, D. E., Levine, Y. K., Requena, J., and Haydon, D. A., 1975, Van der Waals forces in oil-water systems from the study of thin lipid films, III. Comparison of experimental results with Hamaker coefficients calculated from Lifshitz theory, Proc. R. Soc. Lond. A347:179–194.Google Scholar
  10. Coster, H. G. L., and Smith, J. R., 1974, The molecular organization of bimolecular lipid membranes, a study of the low frequency Maxwell-Wagner impedance dispersion, Biochim. Biophys. Atta 373:151–164.CrossRefGoogle Scholar
  11. DeFay, R., and Progogine, I. 1966, Surface Tension and Absorption, Longmans, Green, London.Google Scholar
  12. Dominguez, J. G., Willhite, G. P., and Green, D. W., 1979, Phase behavior of microemulsion systems with emphasis on effects of paraffinic hydrocarbons and alcohols, in: Solution Chemistry of Surfactants. Vol. 2 (K. L. Mittal, ed.), pp. 673–697, Plenum Press, New York.CrossRefGoogle Scholar
  13. Ekwall, P., 1969, Two types of micelle formation in organic solvents, J. Colloid Interface Sci. 20:16–26.CrossRefGoogle Scholar
  14. Eriksson, J. C, 1971, Thermodynamics of surface-phase systems: On the rigorous thermodynamics of insoluble surface films, J. Colloid Interface Sci. 37:659–667.CrossRefGoogle Scholar
  15. Evans, E. A., and Parsegian, V. A., 1983, Energetics of membrane deformation and adhesion in cell and vesicle aggregation, Ann. N.Y. Acad. Sci. 416:13–33.PubMedCrossRefGoogle Scholar
  16. Evans, E. A., and Skalak, R., 1979a, Mechanics and thermodynamics of biomembranes, Part I, CRC Crit. Rev. Bioeng. 3:181–330.PubMedGoogle Scholar
  17. Evans, E. A., and Skalak, R., 1979b, Mechanics and thermodynamics of biomembranes, Part II, CRC. Crit. Rev. Bioeng. 3:331–418.PubMedGoogle Scholar
  18. Everitt, C. T., and Haydon, D. A., 1968, Electrical capacitance of a lipid membrane separating two aqueous phases, J. Theor. Biol. 18:371–379.PubMedCrossRefGoogle Scholar
  19. Fettiplace, R., Andrews, D. M., and Haydon, D. A., 1971, The thickness, composition and structure of some lipid bilayers and natural membranes, J. Membr. Biol. 5:277–296.CrossRefGoogle Scholar
  20. Fettiplace, R., Gordon, L. G. M., Hladky, S. B., Requena, J., Zingsheim, H. P., and Haydon, D. A., 1975, Techniques in the formation and examination of “black” lipid bilayer membranes, in: Methods of Membrane Biology, Vol. 4 (E. D. Korn, ed.), pp. 1–75, Plenum Press, New York.Google Scholar
  21. Finkelstein, A., 1974, Bilayers: Formation, measurements, and incorporation of components, in: Methods of Enzymology, Volume XXXII, Biomembranes, Part B (S. Fleischer and L. Packer, eds.), pp. 489–501, Academic Press, New York.Google Scholar
  22. Franks, N. P., and Lieb, W. R., 1978, Where do general anaesthetics act? Nature 274:339–342.PubMedCrossRefGoogle Scholar
  23. Franks, N. P., and Lieb, W. R., 1981, Is membrane expansion relevant to anaesthesia?, Nature 292:248–251.PubMedCrossRefGoogle Scholar
  24. Gaines, G., 1966, Insoluble Monolayers at Liquid-Gas Interfaces, Wiley-Interscience, New York.Google Scholar
  25. Gershfeld, N. L., 1974, Thermodynamics and experimental methods for equilibrium studies with lipid monolayers, in: Methods in Membrane Biology, Vol. 1 (E. D. Korn, ed.), pp. 69–104, Plenum Press, New York.CrossRefGoogle Scholar
  26. Gershfeld, N. L., 1976, Physical chemistry of lipid films at fluid interfaces, Annu. Rev. Phys. Chem. 27:349–368.CrossRefGoogle Scholar
  27. Gibbs, J. W., 1961, The Scientific Papers of J. Willard Gibbs, Vol. I. Thermodynamics, Dover Publications, New York.Google Scholar
  28. Gruen, W. R., and Marcelja, S., 1984, Water structure near the membrane surface, in: Cell Surface Dynamics: Concepts and Models (A. S. Perelson, C. DiLisi, and F. W. Wiegel, eds.), pp. 59–91, Marcel Dekker, New York.Google Scholar
  29. Guggenheim, E. A., 1977, Thermodynamics, ed. 6, North-Holland, New York.Google Scholar
  30. Hanai, T., Haydon, D. A., and Taylor, J., 1964, An investigation by electrical methods of lecithinin-hydrocarbon films in aqueous solutions, Proc. R. Soc. Lond. A281:377–391.Google Scholar
  31. Haydon, D. A., 1970, The organization and permeability of artificial lipid membranes, in: Membranes and Ion Transport, Vol. I (E. E. Bittan, ed.), pp. 64–92, Wiley-Interscience, London.Google Scholar
  32. Haydon, D. A., and Taylor, J. L., 1968, Contact angles for thin lipid films and the determination of London-van der Waals forces, Nature 217:739–740.CrossRefGoogle Scholar
  33. Henn, F. A., and Thompson, T. E., 1969, Synthetic lipid bilayer membranes, Annu. Rev. Biochem. 38:241–262.PubMedCrossRefGoogle Scholar
  34. Huang, C., Wheeldon, L., and Thompson, T. E., 1969, The properties of lipid bilayer membranes separating two aqueous phases: Formation of a membrane of simple composition, J. Mol. Biol. 8:148–160.CrossRefGoogle Scholar
  35. Israelachvili, J. N., Marcelja, S., and Horn, R. G., 1980, Physical principles of membrane organization, Q. Rev. Biophys. 13:121–200.PubMedCrossRefGoogle Scholar
  36. Jain, M., 1972, The Bimolecular Lipid Membrane: A System, Van Nostrand Reinhold, New York.Google Scholar
  37. Johnson, M. C. R., and Saunders, L., 1973, Time dependent interfacial tensions of a series of phospholipids, Chem. Phys. Lipids 10:318–327.PubMedCrossRefGoogle Scholar
  38. Krasne, S., Eisenman, G., and Szabo, G., 1971, Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin, Science 174:412–415.PubMedCrossRefGoogle Scholar
  39. Langmuir, I., 1933, Oil lenses on water and the nature of monomolecular expanded films, J. Chem. Phys. 1:756–776.CrossRefGoogle Scholar
  40. Luisi, P. L., and Straub, B. E., 1984, Reverse Micelles, Plenum Press, New York.Google Scholar
  41. Miller, C., 1983a, First steps in the reconstruction of ionic channel functions in model membranes, in: Current Methods in Cellular Neurobiology, Vol. 3: Electrophysiological Techniques (J. L. Barber, ed.), pp. 1-37, John Wiley & Sons, New York.Google Scholar
  42. Miller, C., 1983b, Integral membrane channels: Studies in model membranes, Physiol. Rev. 63:1209–1242.PubMedGoogle Scholar
  43. Miller, C., 1984, Ion channels in liposomes, Annu. Rev. Physiol. 46:549–558.PubMedCrossRefGoogle Scholar
  44. Miller, C., and Racker, E., 1976, Ca++-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayer, J. Membr. Biol. 30:283–300.PubMedCrossRefGoogle Scholar
  45. Montai, M., and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties, Proc. Natl. Acad. Sci. U.S.A. 69:3561–3566.CrossRefGoogle Scholar
  46. Montai, M., Darszon, A., and Schindler, H., 1981, Functional reassembly of membrane proteins in planar lipid bilayers, Q. Rev. Biophys. 14:1–79.CrossRefGoogle Scholar
  47. Mueller, P., Rudin, D., Tien, H. T., and Westcott, W. C., 1962, Reconstitution of excitable cell membrane structure in vitro, Circulation 26:1167–1171.CrossRefGoogle Scholar
  48. Needham, D., and Haydon, D. A., 1983, Tensions and free energies of formation of “solventless” lipid bilayers, Biophys. J. 41:251–257.PubMedCrossRefGoogle Scholar
  49. Ostro, M. J., 1983, Liposomes, Marcel Dekker, New York.Google Scholar
  50. Pagano, R. E., Cherry, R. J., and Chapman, D., 1973, Phase transitions and heterogeneity in lipid bilayers, Science 181:557–559.PubMedCrossRefGoogle Scholar
  51. Parsegian, V. A., 1975, Long range van der Waals forces, in: Physical Chemistry: Enriching Topics from Colloid and Surface Science (H. van Olphen and K. J. Mysels, eds.), pp. 27–72, Theorex, La Jolla.Google Scholar
  52. Parsegian, V. A., and Rand, R. P., 1983, Membrane interaction and deformation, Ann. N. Y. Acad. Sci. 146:1–12.CrossRefGoogle Scholar
  53. Parsegian, V. A., Rand, R. P., and Gingell, D., 1984, Lessons for the study of membrane fusion from membrane interactions in phospholipid systems, Cell Fusion, pp. 9-27, Pitman, London.Google Scholar
  54. Pattus, F., Desnuelle, P., and Verger, R., 1978, Spreading of liposomes at the air/water interface, Biochim. Biophys. Acta 507:62–70.PubMedCrossRefGoogle Scholar
  55. Petersen, D. C., 1983, The water permeability of the monoolein/triolein bilayer membrane, Biochim. Biophys. Acta 734:201–209.CrossRefGoogle Scholar
  56. Phillips, M. C., and Hauser, H., 1974, Spreading of solid glycerides and phospholipids at the air-water interface, J. Colloid Interface Sci. 49:31–39.CrossRefGoogle Scholar
  57. Requena, J., and Haydon, D. A., 1975a, The Lippmann equation and the characterization of black lipid films, J. Colloid Interface Sci. 51:315–327.CrossRefGoogle Scholar
  58. Requena, J., and Haydon, D. A., 1975b, Van der Waals forces in oil-water systems from the study of thin lipid films, Part II, Proc. R. Soc. Lond. A347:161–177.Google Scholar
  59. Rosen, D., and Sutton, A. M. 1968, The effects of a direct current potential bias on the electrical properties of bimolecular lipid membranes, Biochim. Biophys. Acta 163:226–233.PubMedCrossRefGoogle Scholar
  60. Schindler, H., 1979, Exchange and interactions between lipid layers at the surface of a liposome solution, Biochim. Biophys. Acta 555:316–336.PubMedCrossRefGoogle Scholar
  61. Schindler, H., 1980, Formation of planar bilayers from artificial or native membrane vesicles, FEBS Lett. 122:77-79.Google Scholar
  62. Tajima, K., and Gershfeld, N. L., 1978, Equilibrium studies of lecithin-cholesterol interactions II. Phase relations in surface films: Analysis of the condensing effect of cholesterol, Biophys. J. 22:489–500.PubMedCrossRefGoogle Scholar
  63. Takagi, M., Azuma, K., and Kishimoto, U., 1965, A new method for the formation of bilayer membranes in aqueous solution, Ann. Rep. Biol. Works Fac. Sci. 13:107–110.Google Scholar
  64. Tanford, C., 1980, The Hydrophobie Effect: Formation of Micelles and Biological Membranes, John Wiley & Sons, New York.Google Scholar
  65. Taylor, J., and Haydon, D. A., 1966, Stabilization of thin films of liquid hydrocarbon by alkyl chain interaction, Disc. Faraday Soc. 42:51–59.CrossRefGoogle Scholar
  66. Tien, H. T., 1974, Bilayer Lipid Membranes (BLM), Marcel Dekker, New York.Google Scholar
  67. Tien, H. T., and Diana, A. L., 1968, Bimolecular lipid membranes: A review and summary of some recent studies, Chem. Phys. Lipids. 2:55–101.PubMedCrossRefGoogle Scholar
  68. Tolman, R. C., 1913, The general principles of equilibria in divided systems, J. Am. Chem. Soc. 35:307–333.CrossRefGoogle Scholar
  69. Waldbillig, R. C., and Szabo, G., 1978, Solvent-depleted bilary membranes from concentrated lipid solutions, Nature 272:839–840.PubMedCrossRefGoogle Scholar
  70. Waldbillig, R. C., and Szabo, G., 1979, Planar bilayer membranes from pure lipids, Biochim. Biophys. Ada 557:295–305.CrossRefGoogle Scholar
  71. White, S. H., 1970, A study of lipid bilayer membrane stability using precise measurements of specific capacitance, Biophys. J. 10:1127–1148.PubMedCrossRefGoogle Scholar
  72. White, S. H., 1972, Analysis of the torus surrounding planar lipid bilayer membranes, Biophys. J. 12:432–445.PubMedCrossRefGoogle Scholar
  73. White, S. H., 1973, The surface charge and double layers of thin lipid films formed from neutral lipids, Biochim. Biophys. Acta 323:343–350.PubMedCrossRefGoogle Scholar
  74. White, S. H., 1974, Temperature-dependent structural changes in planar bilayer membranes: Solvent “freeze-out,” Biochim. Biophys. Acta 356:8–16.PubMedCrossRefGoogle Scholar
  75. White, S. H., 1975, Phase transitions in planar bilayer membranes, Biophys. J. 15:95–117.PubMedCrossRefGoogle Scholar
  76. White, S. H., 1976, The lipid bilayer as a “solvent” for small hydrophobic molecules, Nature 262:421–422.PubMedCrossRefGoogle Scholar
  77. White, S. H., 1977, Studies of the physical chemistry of planar bilayer membranes using high-precision measurements of specific capacitance, Ann. N.Y. Acad. Sci. 303:243–265.PubMedGoogle Scholar
  78. White, S. H., 1978, Formation of “solvent-free” black lipid bilayer membranes from glyceryl monooleate dispersed in squalene, Biophys. J. 23:337–347.PubMedCrossRefGoogle Scholar
  79. White, S. H., 1979, Mechanism of the compression of black lipid membranes by an electric field, Biophys. J. 25:9a.Google Scholar
  80. White, S. H., 1980, How electric fields modify alkane solubility in lipid bilayers, Science 207:1075–1077.PubMedCrossRefGoogle Scholar
  81. White, S. H., and Blessum, D. N., 1975, High precision capacitance bridge for studying lipid bilayer membranes, Rev. Sci. Instrum. 46:1462–1466.PubMedCrossRefGoogle Scholar
  82. White, S. H., and Chang, W., 1981, Voltage dependence of the capacitance and area of black lipid membranes, Biophys. J. 36:449–453.PubMedCrossRefGoogle Scholar
  83. White, S. H., and King, G. I., 1985, Molecular packing and the area compressibility of lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 82:6532–6536.PubMedCrossRefGoogle Scholar
  84. White, S. H., and Thompson, T. E., 1973, Capacitance, area, and thickness variations in thin lipid films, Biochim. Biophys. Acta 323:7–22.PubMedCrossRefGoogle Scholar
  85. White, S. H., Petersen, D. C., Simon, S., and Yafuso, M., 1976, Formation of planar bilayer membranes from lipid monolayers, Biophys. J. 16:481–489.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Stephen H. White
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of California at IrvineIrvineUSA

Personalised recommendations