Advertisement

Four-Terminal Nondestructive Electrical and Galvanomagnetic Measurements

  • H. H. Weider
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 46)

Abstract

One of the well-established procedures used for a quantitative evaluation of the electrical properties of semiconductors is the measurement of their resistivity. Modern technological processes, particularly those concerned with manufacturing of semiconductor devices and integrated circuits require that such measurements be made not only of the spatial average of macroscopic specimens but also of localized microscopic fluctuations in their resistivity.

Keywords

Outer Probe Epitaxial Layer Apparent Resistivity Hall Coefficient Hall Effect Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. B. Valdes, Proc. IRE, 42 (1954) 420.CrossRefGoogle Scholar
  2. 2.
    A.Uhlir, Jr., Bell Syst. Tech. J., 34(1955)105.Google Scholar
  3. 3.
    F. M. Smits, Bell Syst. Tech. J., 37(1958)711.Google Scholar
  4. 4.
    A. Mircea, J. Sci. Instr., 41(1964)679.Google Scholar
  5. 5.
    A. Mircea, Solid-State Electron., 6(1963)459.Google Scholar
  6. 6.
    A. E. Stephens, J. J. Mackey and J. R. Sybert, J. Appl. Phys. 42 (1971) 2592.Google Scholar
  7. 7.
    J. K. Hargreaves and D. Millard, Brit. J. Appl. Phys., 13 (1962) 231.CrossRefGoogle Scholar
  8. 8.
    R. Hall, J. Sci. Instr., 44(1967)53.Google Scholar
  9. 9.
    L. J. van der Pauw, Philips Res. Repts., 13(1958)1.Google Scholar
  10. 10.
    L. J. van der Pauw, Philips Tech. Rev., 20(1958)220.Google Scholar
  11. 11.
    R. Rymaszewsky, Electron. Lett., 3(1967)57.Google Scholar
  12. 12.
    J. M. David and M. G. Buehler, Solid-State Electron., 20(1977)593.Google Scholar
  13. 13.
    C. M. Hurd, J. Sci. Instr., 42(1965)465.Google Scholar
  14. 14.
    G. de Mey, Solid-Stae Electron., 20(1977)139.Google Scholar
  15. 15.
    H. Koppe and J. M. Bryan, Can. J. Phys., 29(1951)274.Google Scholar
  16. 16.
    H. Weiss, Structure and Applications of Galvanomagnetic Devices, Pergamon Press, New York (1969) 16.Google Scholar
  17. 17.
    I. Isenberg, B. R. Russel, R. F. Greene, Rev. Sci. Instr., 19(1948)685.Google Scholar
  18. 18.
    R. F. Wick, J. Appl. Phys., 25(1954)741.Google Scholar
  19. 19.
    H. J. Lippmann and F. Kuhrt, Z. Naturforsch., 13a(1958)474.Google Scholar
  20. 20.
    J. R. Drabble and R. Wolfe, J. Electron. Contr., 3(1957)259.Google Scholar
  21. 21.
    J. Haeusler, Arch. Electrotech, 52(1968)11.Google Scholar
  22. 22.
    J. R. Drabble, M. M. Kaila and H.J. Goldsmid, J. Phys. D. Appl. Phys., 8(1975)790.Google Scholar
  23. 23.
    B. Jacobs and G. de Mey, Electron. Lett. 12(1976)4.Google Scholar
  24. 24.
    J. Haeusler andH. J. Lippmann, Solid-State Electron., 11 (1968)173.Google Scholar
  25. 25.
    G. de Mey, Arch. Elektron. Uebertragungstech., 27(1973)309.Google Scholar
  26. 26.
    G. de Mey, Y. Burvenich and M. de Molder, Phys. Stat. Sol., a23(1974)K45.Google Scholar
  27. 27.
    A. F. Clark and F. R. Ficket, Rev. Sci. Instr., 40(1969)465Google Scholar
  28. 28.
    R. P. Ries and C. B. Scatterthwaite, Rev. Sci. Instr., 38 (1967) 1203.Google Scholar
  29. 29.
    J. Clarke, Phil. Mag., Ser. 8, 13(1966)15.Google Scholar
  30. 30.
    J. J. Donoghue and W. P. Eatherly, Rev. Sci. Instr., 22(1951)513.Google Scholar
  31. 31.
    J. Lavine, Rev. Sci. Instr., 29(1958)970.Google Scholar
  32. 32.
    R. A. Lomas, M. J. Hampshire and R. D. Tomlinson, J. Phys. E. Sci. Instr., 5(1972)819.Google Scholar
  33. 33.
    B. R. Russel and C. Wahlig, Rev. Sci. Instr., 21 (1950) 1028.Google Scholar
  34. 34.
    N. Z. Lupu, N. M. Tallan and D. S. Tannhauser, Rev. Sci. Instr., 38 (1967) 1658.Google Scholar
  35. 35.
    H. L. McKinzie and D. S. Tannhauser, J. Appl. Phys., 40(1969)4954.Google Scholar
  36. 36.
    M. A. Logan, Bell Syst. Tech. J., 40(1961)885.Google Scholar
  37. 37.
    L. J. Swarzendruber, Solid-State Electron., 7(1964)413Google Scholar
  38. 38.
    D. S. Perloff, J. Electrochem. Soc., 123 (1976) 1745.Google Scholar
  39. 39.
    D. S. Perloff, Solid-State Electron., 20(1977)681.Google Scholar
  40. 40.
    D. S. Perloff, F. E. Wahl and J. T. Kerr, Proc. Electron and Ion Beam Science and Tech., 7th Internat. Conf., Electrochem. Soc. (1976)464.Google Scholar
  41. 41.
    D. S. Perloff, F. E. Wahl and J. D. Reimer, Solid State Tech., 20(1977)311Google Scholar
  42. 42.
    D. S. Perloff, F. E. Wahl and J. Conrogan, J. Electrochem. Soc., 124(1977)582.Google Scholar
  43. 43.
    M. G. Buehler and W. Thurber, IEEE Trans Electon Dey., ED-23 (1976)968.Google Scholar
  44. 44.
    P. A. Crossley and W. E. Ham, J. Electron. Mat., 2(1973)465.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • H. H. Weider
    • 1
  1. 1.Electronic Material Sciences DivisionNaval Ocean Systems CenterSan DiegoUSA

Personalised recommendations