Skip to main content

Non-Destructive Tests Used to Insure the Integrity of Semiconductor Devices with Emphasis on Passive Acoustic Techniques

  • Chapter

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 46))

Abstract

This paper reviews a number of important non-destructive tests used frequently in the semiconductor industry to test the mechanical integrity of semiconductor devices. Many of these tests are not rigorously quantitative, but rather, involve an element of human judgement or some empirical comparison for interpretation. As such, the usage of some of the tests is controversial even though they are specified in important military and other microelectronic standards. The scientist or engineer just entering the microelectronics field should look upon this as an opportunity to develop better tests rather than be discouraged by the lack of rigor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Test Methods and Procedures for Microelectronics MIL-STD-883B, (November 1974)

    Google Scholar 

  2. H. Christensen, Bell Laboratories Record 36, 127–130 (April 1958).

    Google Scholar 

  3. G. G. Harman, Ed., Semiconductor Measurement Technology: Micro-Electronic Ultrasonic Bonding, NBS Spec. Publ. 400–2(January 1974 ).

    Google Scholar 

  4. D. R. Johnson and E. L. Chavez, Proc. Intl. Microelec. Symp. (ISHM), 88–94, (October 1976).

    Google Scholar 

  5. R. W. Thomas, IEEE Trans. Parts, Hybrids, and Packaging PHP-12, 3, 167–171 (1976).

    Google Scholar 

  6. G. G. Harman, Proc. 12th Annual IEEE Reliability Physics Symposium, 205–210, (April 1974).

    Google Scholar 

  7. J. Roddy, N. Spann, and P. Seese, IEEE Trans. Comp. Hybrids and Manufacturing Tech. CHMT-1, 3, 228–236 (1978).

    Article  Google Scholar 

  8. G. H. Ebel, Proc. 15th Annual IEEE Reliability Phsyics Symposium, 70–81, (April 1977).

    Google Scholar 

  9. A. Shumka, and R. R. Piety, Proc. 13th Annual IEEE Reliability Physics Symposium, 93098, (April 1975).

    Google Scholar 

  10. S. Ruthberg, Nondes. Testing Standards–A Review, ASTM STP 624, 246–259 (April 1977).

    Article  Google Scholar 

  11. G. G. Harman, Proc. 12th Annual IEEE Reliability Phys. Symp., 253–254 (April 1975).

    Google Scholar 

  12. D. S. Peck, Proc. 13th Annual IEEE Reliability Physics Symposium, 253–254 (April 1975).

    Google Scholar 

  13. B. Maximow, E. M. Reiss, and S. Kutunaris, Proc. 15th Annual IEEE Reliability Physics Symposium, 212–216, (April 1977).

    Google Scholar 

  14. D. S. Peck, Proc. 16th Annual IEEE Reliability Phys. Symp., 1–6, (April 1978).

    Google Scholar 

  15. G. M. Johnson, Accelerated Test Techniques for Microcircuits, Final Tech. Report MDC-E 1208, January 1975, McDonnel Douglas Astronautics Co., East, Contract Report for NASA Goddard Space Flight Center.

    Google Scholar 

  16. M. Stitch, G. Johnson, B. Kirk, and J. B.auer, IEEE Trans. on Reliability R-24, 4, 238–250 (1950)

    Google Scholar 

  17. F. H. Reynolds, Proc. 15th Annual IEEE Reliability Physics Symposium, 166–178, (April 1977).

    Google Scholar 

  18. R. F. S. David, Proc. 28th IEEE Electronics Components Conf., 281–285, (April 1978).

    Google Scholar 

  19. Military Specifications, Microcircuits, General Specification for MIL-M-38510D, (August 1977).

    Google Scholar 

  20. E. G. Schilling, J. Quality Technolgy 10, 2, 47–51 (1978).

    Google Scholar 

  21. A. Joffe, The Physics of Crystals, McGraw Hill, (1928).

    Google Scholar 

  22. J. Kaiser, Untersuchungen uber das Auftreten von Geraschen Beim Zugversuch, Arkiv fur das Eisenhuttenwesen 24, 1/2 43–45.

    Google Scholar 

  23. C. H. Palmer and R. E. Green, Appl. Opt. 16, 9, 2333–2334 (1977).

    Article  Google Scholar 

  24. R. E. Green, Acoustic Emission: A Critical Comparison Between Theory and Experiment, Proc. Ultrasonics International Conf. Brighton, England (June 1977).

    Google Scholar 

  25. N. N. Hsu, J. A. Simmons, and S. C. Hardy, Materials Evaluation 35, 100–106 (October 1977).

    Google Scholar 

  26. H. L. Dunegan and D. O. Harris, Ultrasonics, 160–166 (July 1969).

    Google Scholar 

  27. O. L. Anderson, The Griffith Criterion for Glass Fracture, Wiley & Sons, Inc. (1959)

    Google Scholar 

  28. R. E. Reed-Hill, Physical Metallurgy Principles, 2nd Ed. Nostrand, (1973).

    Google Scholar 

  29. G. P. Anderson, S. J. Bennett and K. L. DeVries, Analysis and Testing of Adhesive Bonds, Academic Press, (1977).

    Google Scholar 

  30. R. E. Green and R. B. Pond, The Ultrasonic Detection of Tatigue

    Google Scholar 

  31. Damage in Aircraft Components, Air Force Office fo Scientific Res., Contract F44620–76-C-0081, (March 1977).

    Google Scholar 

  32. D. O. Harris, A. S. Tetelman, and F. A. Darwistt, Acoustic Emission, ASTM STP 505, 238–249.

    Google Scholar 

  33. M. C. Jon, H. A. Duncan, S. J. Vahaviolos, Analysis of Stress Wave Emission in Resistance Welding of Tantalium Capacitor, Materials Evaluation, to be published.

    Google Scholar 

  34. Jack C. Spanner, Acoustic Emission Techniques and Applications, Soc. for Nondestructive Testing, (1974).

    Google Scholar 

  35. Acoustic Emission, ASTM Tech. Publ. STP 505, Amer. Soc. of Testing and Materials, (1972).

    Google Scholar 

  36. A. E. Lord, Acoustic Emission, Physical Acoustics, W. P. Mason and R. N. Thurston, Eds., 289–353, Academic Press (1975).

    Google Scholar 

  37. G. G. Harman, Proc. 14th Annual IEEE Reliability Phsyics Symp. 86–97, (April 1976)

    Google Scholar 

  38. G. G. Harman, IEEE Trans. Parts, Hybrids, and Packaging PHP-10, 3, 152–159 (September 1974).

    Google Scholar 

  39. S. J. Vahaviolos, IEEE Trans. Parts, Hybrids, and Packaging PHP10, 3, 152–159, (September 1974).

    Google Scholar 

  40. M. A. Siafi andS. J. Vahoviolos, IEEE J. of Quantum Elec. QE-12, 2, 129–136 (1976).

    Article  Google Scholar 

  41. M. F. Carlos and M. C. Jon, Proc. 28th IEEE Elec. Components Conference, 336–339 (April 1978).

    Google Scholar 

  42. M. C. Jon, C. A. Keskimaki and S. J. Vahoviolos, Materials Evaluation 36, 4, 41–51 (1978).

    Google Scholar 

  43. G. C. Knollman and J. L. Weaver, Proc 3rd Acoustic Emission Symposium, 413–427 (September 1976).

    Google Scholar 

  44. T. Ikoma, M. Ogura and Y. Adachi, Ibid, 329–341.

    Google Scholar 

  45. M. Kotani, S. Mitsui, and K. Shirahata, Trans. of IECE of Japan, 58-C, 583–590 (1975).

    Google Scholar 

  46. T. Sedgwick, J. Appl. Phys. 39, 1728–1740 (1968).

    Article  Google Scholar 

  47. T. Ikoma, M. Ogura and Y. Adachi, Acoustic Emission Study of Defects in GAP-LEDS, and unpublished talk presented at the 20th Elec. Materials Conference. Univ. Calif. at Santa Barbara, (June 1978).

    Google Scholar 

  48. J. L. Jellison, IEEE Trans. Parts, Hybrids, and Packaging PHP-11 3, 206–211 (1975).

    Google Scholar 

  49. P. H. Holloway and D. W. Bushmire, Proc. 12th Annual IEEE Reliability Physics Symposium, 180–186 (April 1974).

    Google Scholar 

  50. B. H. Schofield, Acoustic Emission Under Applied Stress, Technical Document Report No. ASD-TDR-63–509, Part II, 1–29, (May 1964), Af. Materials Lab., Wright Patterson AFB, Ohio.

    Google Scholar 

  51. C. E. Wirsing, Solid State Tech.16, 48–50 (1973).

    Google Scholar 

  52. J. L. Jellison, Proc. 26th IEEE Electronics Components Conference, 92–97 (April 1976).

    Google Scholar 

  53. N. T. Panousis and H. B. Bonham, Proc. 10th Annual IEEE Reliability Physics Symposium, 21–25 (April 1973).

    Google Scholar 

  54. P. H. Holloway and R. L. Long, Jr., IEEE Trans. Parts, Hybrids, and Packaging PHP-11, 2, 83–88 (1975).

    Article  Google Scholar 

  55. R. F. Tylecote, Trans. Institute of Welding, 153–178 (November 1945).

    Google Scholar 

  56. This circuit was designed and built by T. F. Leedy.

    Google Scholar 

  57. J. L. Dais, Proc. 25th IEEE Electronics Components Conference, 43–51, (May 1975).

    Google Scholar 

  58. H. C. Rogers, Trans. Met. Soc. of AIME 218, 498–506 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harman, G.G. (1979). Non-Destructive Tests Used to Insure the Integrity of Semiconductor Devices with Emphasis on Passive Acoustic Techniques. In: Zemel, J.N. (eds) Nondestructive Evaluation of Semiconductor Materials and Devices. NATO Advanced Study Institutes Series, vol 46. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1352-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1352-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1354-1

  • Online ISBN: 978-1-4757-1352-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics