The Functional Evaluation of Vitamin Status with Special Attention to Enzyme-Coenzyme Techniques

  • Myron Brin
Part of the Nutrition and Food Science book series (NFS, volume 3)


Following the discovery that there were essential dietary nutritional factors such as vitamins which if not consumed in adequate quantities would result in severe clinical deficiency diseases, and that these diseases could be cured by repletion with the essential nutrients, it soon became evident that the public health problem of nutritional adequacy should be managed by techniques of preventive medicine. Accordingly, an estimate of the vitamin status of the population was needed. With that information one could judge the necessity for intervention programs.


Functional Evaluation Thiamine Deficiency Pyridoxal Phosphate Xanthurenic Acid Vitamin Status 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U.S. Federal Register. Title 7, Chapter IX, Part 1404, 7: 11105, Issue #255, 1942.Google Scholar
  2. 2.
    NAS/NRC Food and Nutrition Board, “Proposed Fortification Policy for Cereal Grain Products”, NAS, Washington, D.C., 1974.Google Scholar
  3. 3.
    Christakis, G., ed., Nutritional assessment in health programs. Am. J. Pub. Hlth. 63, Suppl., November 1973.Google Scholar
  4. 4.
    Brin, M. Dilemma of marginal vitamin deficiency, in: “Proc. 9th Intl. Congr. Nutr., Mexico”, Chavez, A., Bourges, H., and Basta, S., eds., pp. 102–115, Karger, 1975.Google Scholar
  5. 5.
    Brin, M. Drugs and environmental chemicals in relation to vitamin needs. In: “Nutrition and Drug Interrelationships”, Hathcock, J.N. and Coon, J., eds., pp. 131–150, Academic Press, N.Y., 1978.CrossRefGoogle Scholar
  6. 6.
    Kumar, M. and Axelrod, A.E. Cellular antibody synthesis in thiamine, riboflavin, biotin, and folic acid deficient rats. Proc. Soc. Exp. Biol. Med. 157: 421–423, 1978.CrossRefGoogle Scholar
  7. 7.
    Brin, M. Examples of behavioral changes in marginal vitamin deficiencies in the rat and man. Proc. U.S.-Japan Coop. Sci. Progr. on “Behavioral Effects of Energy and Protein Deficits”, Brozek, J., ed., PAHO, Washington, D.C., November 30-December 2, 1977 (in press).Google Scholar
  8. 8.
    Eisman, J.A., Hamstra, A.J., Kream, B.E., and DeLuca, H.F. A sensitive, precise, and convenient method for determination of 1,25-dihydroxy vitamin D in human plasma. Arch. Biochem. Biophys. 1766: 235–243, 1976.CrossRefGoogle Scholar
  9. 9.
    Interdepartmental Committee on Nutrition for National Defense, “Manual for Nutrition Surveys”, 2nd ed., U.S. Gov. Print. Off., Washington, D.C., 1963.Google Scholar
  10. 10.
    Rose, C.S., Gyorgy, P., Butler, N., Andres, R., Norris, A.H., Shock, N.W., Tobin, J., Brin, M., and Spiegel, H. Age difference in vitamin B6 states of 617 men. Am. J. Clin. Nutr. 29: 847–853, 1976.Google Scholar
  11. 11.
    Herbert, V. Biochemical and hematological lesions in folic acid deficiency. Am. J. Clin. Nutr. 20: 562, 1967.Google Scholar
  12. 12.
    Boddy, K. and Adams, J.F. The long-term relationship between serum Vitamin B12 and total body vitamin B12. Am. J. Clin. Nutr. 25: 395, 1972.Google Scholar
  13. 13.
    Association of Vitamin Chemists, “Methods of Vitamin Assay”, 3rd ed., pp. 245–255, J. Wiley, N.Y., 1966.Google Scholar
  14. 14.
    Brin, M. Use of erythrocyte in functional evaluation of vitamin adequacy. In: “The Red Cell”, 1st ed., Bishop C. and Surgenor, D., eds., pp. 451–476, Academic Press, N.Y., 1964.Google Scholar
  15. 15.
    Dowling, J.E. and Wald, G. Vitamin A dificiency and night blindness. Proc. Nat. Acad. Sci. 44: 648, 1958.CrossRefGoogle Scholar
  16. 16.
    Luhby, A.L., Brin, M., Gordon, M., Davis, P., Murphy, M., and Spiegel, H. Vitamin B6 metabolism in users of oral contraceptive agents. I. Abnormal urinary xanthurenic acid excretion and its correction by pyridoxine. Am. J. Clin. Nutr. 24: 648–693, 1971.Google Scholar
  17. 17.
    Park, Y.K. and Linkswiler, H. Effect of vitamin B6 depletion in adult man on the excretion of cystathionine and other methionine metabolites. J. Nutr. 100: 110, 1970Google Scholar
  18. 18.
    Luhby, A.L. and Cooperman, J.M. Folic acid deficiency in man and its interrelationship with vitamin B12 metabolism. Adv. Metab. Disord. 1: 263, 1964.Google Scholar
  19. 19.
    Nixon, P.F. and Bertino, J.R. Interrelationships of vitamin B12 and folate in man. Am. J. Med. 48: 555, 1970.CrossRefGoogle Scholar
  20. 20.
    White, A.M. and Cox, E.V. Methylmalonic acid excretion and vitamin B12 deficiency in the human. Ann. N.Y. Acad. Sci. 112: 915, 1964.CrossRefGoogle Scholar
  21. 21.
    Murthy, P.N.A. and Mistry, S.P. Biotin. Progr. Fd. Nutr. Sci. 2: 402–455, 1977.Google Scholar
  22. 22.
    Horwitt, M.K., Harvey, C.C., Duncan, G.D., and Wilson, W.C. Effects of limited tocopherol intake in man with relationship to erythrocyte hemolysis and lipid oxidations. Am. J. Clin. Nutr. 4: 408, 1956.Google Scholar
  23. 23.
    Brin, M. and Danon, D. Some new developments in the functional evaluation of vitamin E and thiamine nutritional status. J. Sci. Ind. Res. 29: 338–344, 1970.Google Scholar
  24. 24.
    Brin, M. and Yonemoto, R.H. Stimulation of the glucose oxidative pathway in human erythrocytes by methylene blue. J. Biol. Chem. 230: 307–317, 1958.Google Scholar
  25. 25.
    Brin, M., Shohot, S.S. and Davidson, C.S. The effect of thiamine deficiency on the glucose oxidative pathway in rat erythrocytes. J. Biol. Chem. 230: 319–326, 1958.Google Scholar
  26. 26.
    Wolfe, S.J., Brin, M., and Davidson, C.S. The effect of thiamine deficiency on human erythrocyte metabolism. J. Clin. Invest. 37: 1476–1784, 1958.CrossRefGoogle Scholar
  27. 27.
    Brin, M., Tai, M., and Ostashever, A.S. Thiamine deficiency and erythrocyte hemolysate metabolism, Fed. Proc. 18: 518, 1959.Google Scholar
  28. 28.
    Brin, M., Tai, M. Ostashever, A.S., and Kolinsky, H. The effect of thiamine deficiency on the activity of erythrocyte hemolysate transketolase, J. Nutr. 71: 273–281, 1960.Google Scholar
  29. 29.
    Brin, M., Vincent, W., and Watson, J. Human thiamine deficiency and erythrocyte transketolase. Fed. Proc. 21: 468, 1962.Google Scholar
  30. 30.
    Brin, M. Erythrocyte transketolase in early thiamine deficiency. Ann. N.Y. Acad. Sci. 98: 528–541, 1962.CrossRefGoogle Scholar
  31. 31.
    Brin, M. Erythrocyte as a biopsy tissue for functional evaluation of thiamine adequacy. J. Am. Med. Assn. 187: 762–766, 1964.CrossRefGoogle Scholar
  32. 32.
    Brin, M. Functional evaluation of nutritional status: thiamine. In: “Newer Methods in Nutritional Biochemistry”, 3: 407–445, Academic Press, N.Y., 1967.CrossRefGoogle Scholar
  33. 33.
    Brin, M. Effects of thiamine deficiency and oxythiamine on rat tissue transketolase. J. Nutr. 78: 179–183, 1962.Google Scholar
  34. 34.
    Brin, M. The differential effect of pyrithiamine and oxythiamine on rat brain transketolase activity. Abstr. Am. Chem. Soc., Div. Biol. Chem. 146th Ann. Mtg., Denver, Colorado, 1964.Google Scholar
  35. 35.
    Brin, M. The effects of penicilline, D pencillamine and D sorbitol on erythrocyte transketolase activity in thiamine deficient rats. Toxic. Appl. Pharmacol. 6: 631–637, 1964.CrossRefGoogle Scholar
  36. 36.
    Polin, D., Wynosky, E.R., and Porter, C.C. Amprolium: studies on thiamine deficiency in laying chickens and their eggs. J. Nutr. 76: 59, 1962.Google Scholar
  37. 37.
    Haro, E.N., Brin, M., and Faloon, W.W. Fasting in obesity: thiamine deficiency as measured by erythrocyte transketolase changes. Arch. Int. Med. 117: 175–181, 1966.CrossRefGoogle Scholar
  38. 38.
    Dreyfus, D.M. Clinical application of blood transketolase determinations. N. Eng. J. Med. 267: 596, 1962.CrossRefGoogle Scholar
  39. 39.
    Brin, M. Clinical applications of transketolase assays. In: “Methods in Enzymology”, Vol. IX, pp. 506–514, Academic Press, N.Y., 1966.Google Scholar
  40. 40.
    Brin, M. Transketolase (sedoheptulose-7-phosphate:D glyceraldehyde-3-phosphate dihydroxyacetonetransferase, EC and the TPP-effect in assessing thiamine adequacy. In: “Methods in Enzymology”, 18: 125–133, 1970.CrossRefGoogle Scholar
  41. 41.
    Brin, M. Transketolase. In: “Methods in Enzyme Analysis”, Bergmeyer, H.U., ed., 2: 703–709, 1974.CrossRefGoogle Scholar
  42. 42.
    Warnock, L.H. A new approach to erythrocyte transketolase measurement. J. Nutr. 100: 1057, 1970.Google Scholar
  43. 43.
    Schouten, H., Van Eps, S., and Stryker Boudier, A.M. Transketolase in blood. Clin. Chim. Acta. 10: 474, 1964.CrossRefGoogle Scholar
  44. 44.
    Upjohn, D.R., Dohm, G.L., and Ziporin, Z.Z. An enzyme method for the assay of transketolase activity in the red blood cell. J. Nutr., 1973.Google Scholar
  45. 45.
    Chang, Y.H. and Ho, G.S. Erythrocyte transketolase activity. Am. J. Clin. Nutr. 23: 261, 1970.Google Scholar
  46. 46.
    Gubler, C.J. and Johnson, L.R. Enzyme studies in thiamine deficiency. In: “Thiamine Deficiency, Ciba Study Group n9 28”, pp. 54–66, 1967.Google Scholar
  47. 47.
    Bruns, F.H., Dunwald, E., and Noltman, E. III. Quantitative bestimmung von sedoheptulose-7-phosphat and einige eigenshaften der transketolase der erythrocyten un des blutserums. Bioch. Z. 330: 497–508, 1958.Google Scholar
  48. 48.
    Dibble, M.V., Brin, M., McMullen, E., Peel, A., and Chen, N. Some preliminary biochemical findings in junior high school children in Syracuse and Onondaga County, New York. Am. J. Clin. Nutr. 17: 218–239, 1965.Google Scholar
  49. 49.
    Bran, M., Dibble, M.V., Peel, A., McMullen, E., Bourquin, A., and Chen, N. Some preliminary findisgs on the nutrition status of the aged in Onondaga County, N.Y. Am. J. Clin. Nutr. 17: 240–258, 1965.Google Scholar
  50. 50.
    Dibble, M.V., Brin, M., Thiele, V., Peel, A., Chen, N. and Mc Mullen, E. Nutritional status evaluation in older age subjects with comparisons between Fall and Spring. J. Am. Ger. Soc. 15: 1031, 1967.Google Scholar
  51. 51.
    Thiele, V., Brin, M., and Dibble, M.V. Nutritional status evaluation in negro migrant workers in Kings Ferry, N.Y. Am. J. Clin. Nutr. 21: 1229–1238, 1968.Google Scholar
  52. 52.
    Konstirren, A., Louhija, A., and Hartel, G. Blood transketolase in assessment of thiamine deficiency in alcoholics. Ann. Med. Exp. Biol. Benn. 48: 172, 1970.Google Scholar
  53. 53.
    Tripathy, K. Erythrocyte transketolase activity and thiamine transfer across human placenta. Am. J. Clin. Nutr. 21: 739, 1968.Google Scholar
  54. 54.
    Brubacher, G., Haenel, A., and Ritzel, G. Transketolaseactivat, thiaminausscherdung under bluttethiamingehalt bein menschen zur beurterlung der vitamin B1-versorgung. Int. J. Vit. Nutr. Res. 42: 190, 1972.Google Scholar
  55. 55.
    Tanphaichitr, V., Vimokesant, S.L., Dhanamitta, S., and Valiasevi, A. Clinical and biochemical studies of adult beriberi. Am. J. Clin. Nutr. 23: 1017, 1970.Google Scholar
  56. 56.
    Akbarian, M. and Dreyfus, P.M. Blood transketolase activity in beriberi heart disease. J. Am. Med. Assn. 203: 77, 1968.CrossRefGoogle Scholar
  57. 57.
    Burgener, M. and Jurgens, P.G. Thiamine excretion and transketolase activity in chronic alcoholism and Wernicke’s encephalopathy. Ger. Med. Mon. 12: 396, 1967.Google Scholar
  58. 58.
    Coon, W.W. and Bizer, L.S. Subclinical thiamine deficiency in post-operative patients. Surg. Gynecol. Obst. 121: 37, 1965.Google Scholar
  59. 59.
    Interdepartmental Committee on Nutrition for National Defense, Union of Burma Nutrition Survey Report. U.S. Gov. Print. Off., Washington, D.C., May 1963.Google Scholar
  60. 60.
    Brin, M. The effects of cell age and thiamine on erythrocyte transketolase activity. J. Vitaminol. 15: 338–339, 1969.Google Scholar
  61. 61.
    Stevens, C.O., Sauberlich, H.E., and Long, J.L. An automated assay for transketolase determinations. In: “Automation in Analytical Chemistry”, Medical Publ., N.Y., 1968.Google Scholar
  62. 62.
    Brin, M., Olson, R.E., and Stare, F.J. Metabolism of cardiac muscle pyridoxine deficiency. J. Biol. Chem. 210, 435–444, 1954.Google Scholar
  63. 63.
    Brin, M. and McKee, R.W. Effects of X-irradiation, nitrogen, mustard, fasting, cortisone and adrenolectomy on transaminase activity in the rat. Arch. Biochem. Biohpys. 61: 384–389, 1956.CrossRefGoogle Scholar
  64. 64.
    Brin, M. and Tai, M. Pyridoxine deficiency and serum transaminases. Fed. Proc. 17: 472, 1958.Google Scholar
  65. 65.
    Brin, M., Tai, M. Ostashever, A.S., and Kolinsky, H. The relative effects of pyridoxine deficiency on two transaminases in the growing and the adult rat. J. Nutr. 71: 416–420, 1960.Google Scholar
  66. 66.
    Brin, M., Ostashever, A.S., Tai, M., and Kalinsky, H. Effects of feeding X-irradiated pork to rats on pyridoxine nutrition as reflected in the activity of plasma transaminase. J. Nutr. 75: 35–38, 1961.Google Scholar
  67. 67.
    Albert, D.J. and Brin, M. Comparison of serum and erythrocyte hemolysate systems. Fed. Proc. 19: 321, 1960.Google Scholar
  68. 68.
    Cheney, M., Sabry, Z.I., and Beaton, G.H. Erythrocyte glutamic pyruvic transaminase activity in man. Am. J. Clin. Nutr. 16: 337, 1965.Google Scholar
  69. 69.
    Raica, N. Jr. and Sauberlich, H.E. Blood cell transaminase activity in human vitamin B6 deficiency. Am. J. Clin. Nutr. 15: 67, 1964.Google Scholar
  70. 70.
    Sauberlich, H.E., Canham, J.E., Baker, E.M., Raica, N. Jr., and Herman, Y.F. Biochemical Assessment of the nutritional status of vitamin B6 in the human. Am. J. Clin. Nutr. 25: 629, 1972.Google Scholar
  71. 71.
    Driskell, J.A. Vitamin B6 status of the elderly. In: “Human Vitamin B6 Requirements”, pp. 252–256, National Academy of Sciences, Washington, D.C., 1978.Google Scholar
  72. 72.
    Reitman, S. and Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28: 56, 1957.Google Scholar
  73. 73.
    Karmen, A. A note on the spectrophotometric assay of glutamic oxalacetic transaminase in human blood serum. J. Clin. Invest. 34: 131, 1955.CrossRefGoogle Scholar
  74. 74.
    Wroblewski, F. and LaDue, J.S. Serum pyruvic transaminase in cardiac and hepatic disease. Proc. Soc. Exp. Biol. Med. 91: 569, 1956.CrossRefGoogle Scholar
  75. 75.
    Giusti, G., Ruggiero, G., and Cacciatore, L. A comparative study of some spectrophotometric and colorimetric procedures for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminase in hepatic disease. Enzymol. Biol. Clin. 10: 17, 1969.Google Scholar
  76. 76.
    Glatzle, D., Weber, F., and Wiss, O. Enzymatic test for the detection of a riboflavin deficiency. Experientia 24: 1122, 1968.CrossRefGoogle Scholar
  77. 77.
    Beutler, E. Effect of flavin compounds on glutathione reductase activity: in vivo and in vitro studies. J. Clin. Invest. 48: 1957, 1969.CrossRefGoogle Scholar
  78. 78.
    Bamji, M.S. Glutathione Reductase activity in red blood cells and riboflavin nutritional status in humans. Clin. Chim. Acta 26: 263, 1969.CrossRefGoogle Scholar
  79. 79.
    Flatz, G. Population study of erythrocyte glutathione reductase activity. I. Stimulation of the enzyme by flavin adenine dinucleotide and by riboflavin supplementation. Humangenetik 11: 269, 1971.CrossRefGoogle Scholar
  80. 80.
    Tillotson, J.A. and Baker, E.M. An enzymatic measurethent of the riboflavin status in man. Am. J. Clin. Nutr. 25: 425, 1972.Google Scholar
  81. 81.
    Glatzle, D., Korner, W.F., Christellar, S., and Wiss, O. Method for the detection of a biochemical riboflavin deficiency. Int. J. Vit. Nutr. Res. 40: 166, 1970.Google Scholar
  82. 82.
    Sauberlich, H.E., Judd, J.H., Nichoalds, G.E., Broquist, H.P. and Darby, W.J. Application of the erythrocyte glutathione reductase assay in evaluating riboflavin nutritional status in a high school student population. Am. J. Clin. Nutr. 25: 756, 1972.Google Scholar
  83. 83.
    Krishnaswamy, K. Erythrocyte transaminase activity in human vitamin B6 deficiency. Int. J. Vit. Nutr. Res. 41: 240, 1971.Google Scholar
  84. 84.
    Krishnaswamy, K. Erythrocyte glutamic oxalacetic transaminase activity in patients with oral lesions. Int. J. Vit. Nutr. Res. 41: 247, 1971.Google Scholar
  85. 85.
    Sauberlich, H.E., Dowdy, R.P., and Skala, J.H. “Laboratory Tests for Assessment of Nutritional Status”. CRC Press, Inc., Cleveland, 1974.Google Scholar
  86. 86.
    Nakamura, R., Littarru, G.P., and Folkers, K. A new enzymic assay for human deficiencies of coenzyme Q10. Int. J. Vit. Nutr. Res. 43: 526–536, 1973.Google Scholar
  87. 87.
    Folkers, K. Relationship between coenzyme Q10 and vitamin E. Am. J. Clin. Nutr. 27: 1026, 1974.Google Scholar
  88. 88.
    Hegsted, D.M., Mills, R.C., Briggs, D.M. Elvehjem, C.A., and Hart, E.B. Biotin in chick nutrition. J. Nutr. 23: 175–179, 1942.Google Scholar
  89. 89.
    Patrik, H., Boucher, R.V., Dutcher, R.A., and Knandel, H.C. Prevention of perosis and dermatitis in turkey poults. J. Nutr. 26: 197–204, 1943.Google Scholar
  90. 90.
    Castledine, A.J., Cho, C.Y., Slinger, S.J., Hicks, B., and Bayley, H.S. Influence of dietary biotin level on growth, metabolism and pathology of rainbow trout. J. Nutr. 108: 698–711, 1978.Google Scholar
  91. 91.
    Whitehead, C.C. and Bannister, D.W. Blood pyruvate carboxylase activity as a criterion of biotin status in chickens and turkeys. Br. J. Nutr. 39: 547–556, 1978.CrossRefGoogle Scholar
  92. 92.
    Bannister, D.W. and Whitehead, C.C. Presence of pyruvate carboxilase in the blood of the domestic fowl, and an assay procedure. Int. J. Biochem. 7: 619–624, 1976.CrossRefGoogle Scholar
  93. 93.
    Center for Disease Control. Ten State Nutrition Survey in the U.S., U.S. Department of Health, Education and Welfare, Atlanta, 1972.Google Scholar
  94. 94.
    U.S. Dept. of Agriculture. Dietary Levels of Households in the U.S., Spring 1965, USDA Publ. #ARS62–17, 1968.Google Scholar
  95. 95.
    National Center for Health Statistics. Health and Nutrition Examination Survey (HANES), Health Resources Administration, Washington, D.C., 1973, 1974.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Myron Brin
    • 1
  1. 1.Clinical NutritionRoche Research CenterNutleyUSA

Personalised recommendations