Skip to main content

Potential and Commercial Applications for Photosynthetic Prokaryotes

  • Chapter
Photosynthetic Prokaryotes

Part of the book series: Biotechnology Handbooks ((BTHA,volume 6))

Abstract

The cyanobacteria, together with phototrophic green and purple bacteria and prochlorophytes, share a basic prokaryotic cellular organization and together constitute the photosynthetic prokaryotes (see Stanier et al., 1981). A major distinction between the photosynthetic bacteria and cyanobacteria is the presence of oxygenic photosynthesis, with two photosystems acting in series, in cyanobacteria and of anoxygenic photosynthesis, using only one photosystem, in photosynthetic bacteria. In 1952 the first Algal Mass Culture Symposium was held to consider potential applications of microalgae (Burlew, 1953) and there has since been an increasing interest in this field. Oxygenic photosynthesis is a unique means of utilizing cheap substrates (CO2, H2O, and solar energy) for the primary production of organic compounds and many potential applications of cyanobacteria rely on this process. Since photosynthetic bacteria carry out anoxygenic photosynthesis, their use requires the provision of organic or inorganic electron donors; for example, organic wastes. Certain species of cyanobacteria and photosynthetic bacteria have the ability to fix atmospheric dinitrogen, catalyzed by the enzyme nitrogenase. The agronomic potential of nitrogen fixation by cyanobacteria, particularly in the cultivation of rice, is well documented, as is the production of H2, catalyzed by nitrogenase, in both photosynthetic bacteria and cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeliovich, A., 1986, Algae in wastewater oxidation ponds, in: CRC Handbook of Microalgal Mass Culture ( A. Richmond, ed.), CRC Press, Boca Raton, Florida, pp. 331–338.

    Google Scholar 

  • Abul-Hajj, Y. J., and Qian, X., 1986, Transformation of steroids by algae,J. Nat. Prod. 49: 244–248.

    CAS  Google Scholar 

  • Achtnich, W., Moawad, A. M., and Johal, A. M., 1986, Azolla, a biofertilizer for rice, Int. J. Trop. Agric. 4: 188–211.

    Google Scholar 

  • Aiken, C., and Gumport, R. I., 1988, Restriction endonuclease RsrI from Rhodobacter sphaeroides, an isoschizomer of EcoRI: Purification and properties, Nucleic Acids Res. 16: 7901–7916.

    PubMed  CAS  Google Scholar 

  • Antarikanonda, P., 1984, Production of extracellular free amino acids by cyanobacterium Anabaena siamensis Antarikanonda, Curr. Microbiol. 11: 191–196.

    CAS  Google Scholar 

  • Asada, Y., and Kawamura, S., 1985, Hydrogen evolving activity among the genus, Microcystis, under dark and anaerobic conditions, Rep. Ferment. Res. Inst. Japan 63: 39–54.

    Google Scholar 

  • Asada, Y., Tomizuka, N., and Kawamura, S., 1985, Prolonged hydrogen production by a cyanobacterium (blue-green alga), Anabaena sp., J. Ferment. Technol. 63: 85–90.

    CAS  Google Scholar 

  • Avissar, Y. J., 1983, 5-Aminolevulinate synthesis is permeabilized filaments of the blue-green alga Anabaena variabilis, Plant Physiol. 72: 200–203.

    Google Scholar 

  • Barchi, J. J., Norton, T. R., Furusawa, E., Patterson, G. M. L., and Moore, R. E., 1983, Identification of a cytotoxin from Tolypothrix byssoidea as tubercidin, Phytochemistry 22: 2851–2852.

    CAS  Google Scholar 

  • Barchi, J. J., Moore, R. E., and Patterson, G. M. L., 1984, Acutiphycin and 20,21-dihydroacutiphycin, new antineoplastic agents from the cyanophyte Oscillatoria acutissima, J. Am. Chem. Soc. 106: 8193–8197.

    CAS  Google Scholar 

  • Belkin, S., and Padan, E., 1978, Hydrogen metabolism in the faculative anoxygenic cyanobacteria (blue-green algae) Oscillatoria limnetica and Aphanothece halophytica, Arch. Microbiol. 116: 109–111.

    PubMed  CAS  Google Scholar 

  • Benemann, J. R., 1989, The future of microalgal biotechnology, in: Algal and Cyanobacterial Biotechnology ( R. C. Cresswell, T. A. V. Rees, and N. Shah, eds.), Longman, Harlow, pp. 317–337.

    Google Scholar 

  • Benemann, J. R., and Weare, N. M., 1974, Nitrogen fixation by Anabaena cylindrica. III. Hydrogen-supported nitrogenase activity, Arch. Microbiol. 101: 401–408.

    CAS  Google Scholar 

  • Benemann, J. R., Weismann, J. C., and Oswald, W. J., 1979, Algal biomass, in: Microbial Biomass, Ecomomic Microbiology, (Volume 4 ( A. H. Rose, ed.)), Academic Press, London, pp. 177–206.

    Google Scholar 

  • Bliznakov, E. G., and Hunt, G. L., 1987, The Miracle Nutrient Coenzyme Q jo, Bantam Books, New York.

    Google Scholar 

  • Bloor, S., and England, R. R., 1991, Elucidation and optimization of the medium constituents controlling antibiotic production by the cyanobacterium Nostoc muscorum, Enzyme Microb. Technol. 13: 76–81.

    PubMed  CAS  Google Scholar 

  • Bollinger, R., Zürrer, H., and Bachofen, R., 1985, Production of molecular hydrogen from waste water of a sugar refinery by photosynthetic bacteria, Appl. Microbiol. Biotechnol. 23: 147–151.

    Google Scholar 

  • Borowitzka, M. A., 1988, Vitamins and fine chemicals from microalgae, in: Micro-algal Biotechnology ( M. A. Borowitzka and L. J. Borowitzka, eds.), Cambridge University Press, Cambridge, pp. 153–196.

    Google Scholar 

  • Borowitzka, M. A., and Borowitzka, L. J. (eds.), 1988, Micro-algal Biotechnology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Borowitzka, L. J., and Borowitzka, M. A., 1989, Industrial production: Methods and economics, in: Algal and Cyanobacterial Biotechnology ( R. C. Cresswell, T. A. V. Rees, and N. Shah, eds.), Longman, Harlow, pp. 294–316.

    Google Scholar 

  • Bose, P., Nagpal, U. S., Venkataraman, G. S., and Goyal, S. K., 1971, Solubilization of tri-calcium phosphate by blue green algae, Curt Sci. 7: 165–166.

    Google Scholar 

  • Bothe, H., 1982, Hydrogen production by algae, Experientia 38: 59–64.

    CAS  Google Scholar 

  • Bothe, H., Nelles, H., Hager, K.-P., Papen, H., and Neuer, G., 1984, Physiology and biochemistry of N2-fixation by cyanobacteria, in: Advances in Nitrogen Fixation Research ( C. Veeger and W. E. Newton, eds.), Martinus Nijhoff/Dr. W. Junk, The Hague, pp. 199–210.

    Google Scholar 

  • Brouers, M., and Hall, D. 0., 1986, Ammonium and hydrogen production by immobilized cyanobacteria, J. Biotechnol. 3: 307–321.

    CAS  Google Scholar 

  • Burlew, J. S. (ed.), 1953, Algal Culture from Laboratory to Pilot Plant, Carnegie Institute, Washington, D. C.

    Google Scholar 

  • Cannell, R. J. P., Owsianka, A. M., and Walker, J. M., 1988, Results of a large-scale screening programme to detect antibacterial activity from freshwater algae, Br. Phycol. J. 23: 41–44.

    Google Scholar 

  • Cardellina, J. H., Marner, F.J., and Moore, R. E., 1979a, Seaweed dermatitis: Structure of lyngbyatoxin A, Science 204: 193–195.

    PubMed  CAS  Google Scholar 

  • Cardellina, J. H., Moore, R. E., Arnold, E. V., and Clardy, J., 1979b, Structure and absolute configuration of malyngolide, an antibiotic from the marine blue-green alga Lyngbya majuscula Gomont, J. Org. Chem. 44: 4039–4042.

    CAS  Google Scholar 

  • Carmeli, S., Moore, R. E., Patterson, G. M. L., Corbett, T. H., and Valeriate, F. A., 1990a, Tantazoles: Unusual cytotoxic alkaloids from the blue-green alga Scytonema mirabile, J. Am. Chem. Soc. 112: 8195–8197.

    CAS  Google Scholar 

  • Carmeli, S., Moore, R. E., Patterson, G. M. L., Mori, Y., and Suzuki, M., 1990b, Isonitriles from the blue-green alga Scytonema mirabile, J. Org. Chem. 55: 4431–4438.

    CAS  Google Scholar 

  • Carter, D. C., Moore, R. E., Mynderse, J. S., Niemczura, W. P., and Todd, J. S., 1984, Structure of majusculamide C, a cyclic depsipeptide from Lyngbya majuscula, J. Org. Chem. 49: 236241.

    Google Scholar 

  • Chlorella, 1983, Method of human cell culture, U. S. Patent 4468–460.

    Google Scholar 

  • Chung, P., Pond, W. C., Kingsburg, J. M., Walker, E. F. and Krook, L., 1978, Production and nutritive values of Arthospira platensis, a spiral blue-green alga grown on swine wastes, J. Anim. Sci. 47: 319–330.

    CAS  Google Scholar 

  • Chungjatupornchai, W., 1990, Expression of the mosquitocidal-protein genes of Bacillus thuringiensis subsp. israelensis and the herbicide-resistance gene bar in Synechocystis PCC 6803, Curr. Microbiol. 21: 283–288.

    CAS  Google Scholar 

  • Ciferri, O., Tiboni, O., and Sanagelantoni, A. M., 1989, The genetic manipulation of cyanobacteria and its potential uses, in: Algal and Cyanobacterial Biotechnology ( R. C. Cresswell, T. A. V. Rees, and N. Shah, eds.), Longman, Harlow, pp. 239–271.

    Google Scholar 

  • Clément, Y., and Lanéelle, G., 1986, Glutamate excretion mechanism in Corynebacterium glutamicum: Triggering by biotin starvation or by surfactant addition, J. Gen. Microbiol. 132: 925–929.

    Google Scholar 

  • Cork, D., Mathers, J., Maka, A., and Srnak, A., 1985, Control of oxidative sulfur metabolism of Chlorobium limicola forma thiosulfatophilum—effect of light energy and molar flow rate, Appt. Environ. Microbiol. 49: 269–272.

    CAS  Google Scholar 

  • Cox, J., Kyle, D., Radmer, R., and Delente, J., 1988, Stable-isotope-labeled biochemicals from microalgae, Trends Biotechnol. 6: 279–282.

    CAS  Google Scholar 

  • Cresswell, R. C., Rees, T. A. V., and Shah, N. (eds.), 1989, Algal and Cyanobacterial Biotechnology, Longman, Harlow.

    Google Scholar 

  • Daday, A., Platz, R. A., and Smith, G. D., 1977, Anaerobic and aerobic hydrogen gas formation by the blue-green alga Anabaena variabilis, Appt. Environ. Microbiol. 34: 478–483.

    CAS  Google Scholar 

  • Daday, A., Mackerras, A. H., and Smith, G. D., 1985, The effect of nickel on hydrogen metabolism and nitrogen fixation in the cyanobacterium Anabaena cylindrica, J. Gen. Microbiol. 131: 231–238.

    CAS  Google Scholar 

  • Dadhich, K. S., Varma, A. K., and Venkataraman, G. S., 1969, The effect of Calothrix inoculation on vegetable crops, Plant Soil 31: 377–379.

    Google Scholar 

  • De, P. K., 1939, The role of blue-green algae in nitrogen fixation in rice fields, Proc. R. Soc. Lond. B 127: 121–139.

    CAS  Google Scholar 

  • De la Noue, J., and Proulx, D., 1988, Tertiary treatment of urban wastewaters by chitosanimmobilized Phormidium sp., in: Algal Biotechnology ( T. Stadler, J. Mollion, M.-C., Verdus, Y. Karamanos, H. Morvan, and D. Christiaen, eds.), Elsevier, London, pp. 159–168.

    Google Scholar 

  • Dutton, P. L., and Evans, W. C., 1978, Metabolism of aromatic compounds by Rhodospirillaceae, in: The Photosynthetic Bacteria ( R. K. Clayton and W. R. Sistrom, eds.), Plenum Press, New York, pp. 719–726.

    Google Scholar 

  • Entzeroth, M., Mead, D. J., Patterson, G. M. L., and Moore, R. E., 1985, A herbicidal fatty acid produced by Lyngbya aestuarii, Phytochemistry 24: 2875–2876.

    CAS  Google Scholar 

  • Entzeroth, M., Moore, R. E., Niemczura, W. P. and Patterson, G. M. L., 1986, O-Acetyl-0butyl-O-carbamoyl-O,O-dimethyl-a-cyclodextrins from the cyanophyte Tolypothrix byssoidea, J. Org. Chem. 51: 5307–5310.

    CAS  Google Scholar 

  • Ergo-Forsch., 1985, Coenzyme Qio production (ubiquinone), West German Patent 3416–854.

    Google Scholar 

  • Fallowfield, H. J., and Garrett, M. K., 1985, The treatment of wastes by algal culture,/ Appt. Bacteriol. Symp. Suppl. 1985: 187s - 205s.

    Google Scholar 

  • Faulkner, D. J., 1984, Marine natural products: Metabolites of marine algae and herbivorous marine molluscs, Nat. Prod. Rep. 1: 251–280.

    CAS  Google Scholar 

  • Fisher, N. S., 1985, Accumulation of metals by marine picoplankton, Mar. Biol. 87: 137–142.

    CAS  Google Scholar 

  • Flores, E., and Wolk, C. P., 1986, Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and other antibiotics that kill related strains, Arch. Microbiol. 145: 215–219.

    PubMed  CAS  Google Scholar 

  • Fogg, G. E., 1952, The production of extracellular nitrogenous substances by a blue-green alga, Proc. R. Soc. Lond. B 139: 372–397.

    CAS  Google Scholar 

  • Fox, R. D., 1988, Nutrient preparation and low cost basin construction for village production of Spirulina, in: Algal Biotechnology ( T. Stadler, J. Mollion, M.-C. Verdus, Y. Karamanos, H. Morvan, and D. Christiaen, eds.), Elsevier, London, pp. 355–364.

    Google Scholar 

  • Fujiki, H., Suganuma, M., Tahira, T., Yoshioka, A., Nakayasu, M., Endo, Y., Shudo, K., Takayama, S., Moore, R. E., and Sugimura, T., 1984, New class of tumour promoters: Teleocidin, aplysiatoxin, and palytoxin, in: Cellular Interactions by Environmental Tumour Promoters ( H. Fujiki, E. Hecker, R. E. Moore, T. Sugimura, and I. B. Weinstein, eds.), Japan Scientific Society Press, Tokyo/VNU Science Press, Utrecht, pp. 37–45

    Google Scholar 

  • Gadd, G. M., 1988, Accumulation of metals by microorganisms and algae, in: Biotechnology—A Comprehensive Treatise, Volume 6b ( H. J. Rehm, ed.), VCH Verlagsgesellschaft, Weinheim, pp. 401–433.

    Google Scholar 

  • Gaisford, W. C., and Rawson, D. M., 1989, Biosensors for environmental monitoring, Measurement Control 22: 183–186.

    Google Scholar 

  • Gale, N. L., and Wixson, B. G., 1979, Removal of heavy metals from industrial effluents by algae, Dev. Ind. Microbiol. 20: 259–273

    Google Scholar 

  • Gallon, J. R., and Chaplin, A. E., 1987, An Introduction to Nitrogen Fixation, Cassell, London. Gantar, M., Kerby, N. W., Rowell, P., and Obreht, Z., 1991a, Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: I. A survey of soil cyanobacterial isolates forming associations with roots, New Phytol. 118: 477–483.

    Google Scholar 

  • Gantar, M., Kerby, N. W., and Rowell, P., 1991b, Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: II. An ultrastructural study, New Phytol. 118: 485–492.

    Google Scholar 

  • Gerwick, W. H., Lopez, A., Van Duyne, G. D., Clardy, J., Ortiz, W., and Baez, A., 1986, Hormothamnione, a novel cytotoxic styrylchromone from the marine cyanophyte Hormothamnion enteromorphoides Grunow, Tetradedron Lett. 27: 1979–1982.

    CAS  Google Scholar 

  • Gerwick, W. H., Reyes, S., and Alvardo, B., 1987, Two malyngamides from the Caribbean cyanobacterium Lyngbya majuscula, Phytochemistry 26: 1701–1704.

    CAS  Google Scholar 

  • Gerwick, W. H., Mrozek, C., Moghaddam, M. F., and Agarwal, S. K., 1989, Novel cytotoxic peptides from the tropical marine cyanobacterium, Hormothamnion enteromorphoides, 1. Discovery, isolation, and initial chemical and biological characterization of the hormothamnins from wild and cultured material, Experientia 45: 115–121.

    PubMed  CAS  Google Scholar 

  • Glazer, A., and Stryer, L., 1984, Phycofluor probes, Trends Biochem. Sci. 8: 423–427.

    Google Scholar 

  • Gleason, F. K., and Baxa, C. A., 1986, Activity of the natural algicide, cyanobacterin, on eukaryotic microorganisms, FEMS Microbiol. Lett. 33: 85–88.

    CAS  Google Scholar 

  • Gleason, F. K., and Case, D. E., 1986, Activity of the natural algicide, cyanobacterin, on angiosperms, Plant Physiol. 80: 834–837.

    PubMed  CAS  Google Scholar 

  • Gleason, F. K., and Paulson, J. L., 1984, Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp., Arch. Microbiol. 138: 273–277.

    CAS  Google Scholar 

  • Glombitza, K.-W. and Koch, M., 1989, Secondary metabolites of pharmaceutical potential, in: Algal and Cyanobacterial Biotechnology ( R. C. Cresswell, T. A. V. Rees, and N. Shah, eds.), Longman, Harlow, pp. 161–238.

    Google Scholar 

  • Goldman, J. C., 1979, Outdoor algal mass cultures. I. Applications, Water Res. 13: 1–19.

    Google Scholar 

  • Greene, P. J., Ballard, B. T., Stephenson, F., Kohr, W. J., Rodriguez, H., Rosenberg, J. M., and Boyer, H. W., 1988, Purification and characterization of the restriction endonuclease Rsr1, an isoschizomer of EcoR1, Gene 68: 43–52.

    PubMed  CAS  Google Scholar 

  • Gudin, C., and Thepenier, C., 1986, Bioconversion of solar energy into organic chemicals by microalgae, Adv. Biotechnol. Processes 6: 73–110.

    CAS  Google Scholar 

  • Gunnison, D., and Alexander, M., 1975, Resistance and susceptibility of algae to decomposition by various microbial communities, Limnol. Oceanogr. 20: 64–70.

    Google Scholar 

  • Gusev, M. V. and Korhenevskaya, G., 1990, Artificial Associations, in: CRC Handbook of Symbiotic Cyanobacteria ( A. N. Raj, ed.), CRC Press, Boca Raton, Florida, pp. 173–230.

    Google Scholar 

  • Gustafson, K. R., Cardellina, J. H., Fuller, R. W., Weislow, S., Kiser, R. F., Snader, K. M., Patterson, G. M. L., and Boyd, M. R., 1989, AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae), J. Natl. Cancer Inst. 81: 1255–1258.

    Google Scholar 

  • Hageman, R. V., and Burris, R. H., 1980, Electron allocation to alternative substrates of Azotobacter nitrogenase is controlled by the electron flux through dinitrogenase, Biochim. Biophys. Acta 591: 63–75.

    PubMed  CAS  Google Scholar 

  • Hall, D. O., Affolter, D. A., Brouers, M., Shi, D. J., Wang, L. W., and Rao, K. K., 1985, Photobiological production of fuels and chemicals by immobilized algae, Proc. Phytochem. Soc. Eur. 26: 161–185.

    Google Scholar 

  • Hall, G., Flick, M. B., and Jensen, R. A., 1980, Approach to the recognition of regulatory mutants of cyanobacteria, J. Bacterial. 143: 981–988.

    CAS  Google Scholar 

  • Hallenbeck, P. C., 1987, Molecular aspects of nitrogen fixation by photosynthetic prokaryotes, CRC Critical Rev. Microbiol. 14: 1–48.

    CAS  Google Scholar 

  • Harwood, C. S., and Gibson, J., 1988, Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris, Appl. Environm. Microbiol. 54: 712–717.

    CAS  Google Scholar 

  • Hashimoto, S., and Furukawa, K., 1989, Nutrient removal from secondary effluent by filamentous algae, J. Ferment. Bioeng. 67: 62–69.

    CAS  Google Scholar 

  • Haystead, A., Robinson, R., and Stewart, W. D. P., 1970, Nitrogenase activity in extracts of heterocystous and non-heterocystous blue-green algae, Arch. Mikrobiol. 74: 235–243.

    PubMed  CAS  Google Scholar 

  • Hien, N. T., Kerby, N. W., Machray, G. C., Rowell, P., and Stewart, W. D. P., 1988, Expression of glutamine synthetase in mutant strains of the cyanobacterium Anabaena variabilis which liberate ammonia, FEMS Microbiol. Lett. 56: 337–342.

    CAS  Google Scholar 

  • Hirayama, O., and Katsuta, Y., 1988, Stimulation of vitamin B12 in Rhodospirillum rubrum G-9 BM, Agric. Biol. Chem. 52: 2949–2951.

    CAS  Google Scholar 

  • Horikoshi, T., Nakajima, A., and Sakaguchi, T., 1979, Uptake of uranium from sea water by Synechococcus elongatus, J. Ferment. Technol. 57: 191–194.

    CAS  Google Scholar 

  • Houchins, J. P., 1984, The physiology and biochemistry of hydrogen metabolism in cyanobacteria, Biochim. Biophys. Acta 768: 227–255.

    CAS  Google Scholar 

  • Houchins, J. P., and Burris, R. H., 198la, Occurrence and localization of two distinct hydrogenases in the heterocystous cyanobacterium Anabaena sp. strain 7120, J. Bacteriol. 146: 209–214

    Google Scholar 

  • Houchins, J. P., and Burris, R. H., 198 lb, Comparative characterization of two distinct hydrogenases from Anabaena sp. strain 7120, J. Bacteriol. 146: 215–221.

    Google Scholar 

  • Institute of Gas Technology, 1987, Removing sulfur compounds and carbon oxides from gas streams, U. S. Patent 4666–852.

    Google Scholar 

  • Ishibashi, M., Moore, R. E., and Patterson, G. M. L., 1986, Sctophycins, cytotoxic and antimycotic agents from a cyanophyte Scytonema pseudohofmanni, J. Org. Chem. 51: 5300–5306

    CAS  Google Scholar 

  • Jeanfils, J., and Loudeche, R., 1986, Photoproduction of ammonia by immobilized hetero- cystic cyanobacteria. Effect of nitrite and anaerobiosis, Biotechnol. Lett. 8: 265–270.

    CAS  Google Scholar 

  • Jensen, R. A., and Hall, G. C., 1982, Endo-oriented control of pyramidally arranged metabolic branch points, Trends Biochem. Sci. 7: 177–185.

    CAS  Google Scholar 

  • Jensen, T. E., Baxter, M., Rachlin, J. W., and Jani, V., 1982, Uptake of heavy metals by Plectonema boryanum (Cyanophyceae) into cellular components, especially polphosphate bodies: An X-ray energy dispersive study, Environ. Pollut. A 27: 119–127.

    CAS  Google Scholar 

  • Karuna-Karan, A., 1987, Product formulations from commercial scale culture of microalgae, in: World Biotech Report, Volume 1, Part 4, Online, London, pp. 37–44.

    Google Scholar 

  • Kellam, S. J., Cannell, R. J. P., Owsianka, A. M., and Walker, J. M., 1988, Results of large-scale screening programme to detect antifungal activity from marine and freshwater micro-algae in laboratory culture, Br. Phycol. J. 23: 45–47.

    Google Scholar 

  • Kentemich, T., Danneberg, G., Hundeshagen, B., and Bothe, H., 1988, Evidence for the occurrence of the alternative vanadium-containing nitrogenase in the cyanobacterium Anabaena variabilis, FEMS Microbiol. Lett. 51: 19–24.

    CAS  Google Scholar 

  • Kerby, N. W., Musgrave, S. C., Codd, G. A., Rowell, P., and Stewart, W. D. P., 1983, Photoproduction of ammonia by immobilized cyanobacteria, in: Biotech ‘83 Proceedings of the International Conference on the Commercial Applications and Implications of Biotechnology, Online, Northwood, pp. 1029–1036.

    Google Scholar 

  • Kerby, N. W., Musgrave, S. C., Shestakov, S. V., Rowell, P., and Stewart, W. D. P., 1986, Photoproduction of ammonium by immobilized mutant strains of Anabaena variabilis, Appl. Microbiol. Biotechnol. 24: 42–46.

    CAS  Google Scholar 

  • Kerby, N. W., Niven, G. W., Rowell, P., and Stewart, W. D. P., 1987, Photoproduction of amino acids by mutant strains of Na-fixing cyanobacteria, Apps. Microbiol. Biotechnol. 25: 547552.

    Google Scholar 

  • Kerby, N. W., Niven, G. W., Rowell, P., and Stewart, W. D. P., 1988, Ammonia and amino acid production by cyanobacteria, in: Algal Biotechnology ( T. Stadler, J. Mollion, M.-C. Verdus, Y. Karamanos, H. Morvan, and D. Christiaen, eds.), Elsevier, London, pp. 277–286.

    Google Scholar 

  • Kerby, N. W., Rowell, P., and Stewart, W. D. P., 1989, The transport, assimilation and production of nitrogenous compounds by cyanobacteria and microalgae, in: Algal and Cyanobacterial Biotechnology ( R. C. Cresswell, T. A. V. Rees, and N. Shah, eds.), Longman, Harlow, pp. 50–90.

    Google Scholar 

  • Kerby, N. W., Rowell, P., and Reglinski, A., 1990, Characterization of ammonia analogue resistant mutants of the cyanobacterium Anabaena variabilis, in: Inorganic Nitrogen Uptake and Metabolism in Plants and Microorganisms ( W. R. Ullrich, C. Rigano, A. Fuggi, and P. J. Aparicio, eds.), Springer-Verlag, Berlin, pp. 106–112.

    Google Scholar 

  • Kim, J. S., Ito, K., Izaki, K., and Takahashi, H., 1987a, Production of molecular hydrogen by a semi-continuous outdoor culture of Rhodopseudomonas sphaeroides, Agric. Biol. Chem. 51: 1173–1174.

    CAS  Google Scholar 

  • Kim, J. S., Ito, K., Izaki, K., and Takahashi, H., 1987b, Production of molecular hydrogen by a continuous culture under laboratory conditions, Agric. Biol. Chem. 51: 2591–2593.

    CAS  Google Scholar 

  • Kobayashi, M., and Kurata, S., 1978, The mass culture and cell utilization of photosynthetic bacteria, Process Biochem. 13: 27–30.

    CAS  Google Scholar 

  • Kohlhase, M., and Pohl, P., 1988, Saturated and unsaturated sterols of nitrogen-fixing blue-green algae (cyanobacteria), Phytochemistry 27: 1735–1740.

    CAS  Google Scholar 

  • Kulasooriya, S. A., Seneviratne, P. R. G., De Silva, W. S. A. G., Abeysekera, S. W., Wijesundra, C., and De Silva, A. P., 1988, Isotopic studies on N2-fixation and the availability of its nitrogen to rice, Symbiosis 6: 151–166.

    Google Scholar 

  • Kuwada, Y., and Ohata, Y., 1987, Hydrogen production by an immobilized cyanobacterium, Lyngbya sp., J. Ferment. Technol. 65: 597–602.

    CAS  Google Scholar 

  • Kyowa-Hakko, 1985, Process for producing coenzyme Qio, Japanese Patent J6 0075–293.

    Google Scholar 

  • Kyowa-Hakko, 1986, Process for producing coenzyme Qio, Japanese Patent J6 0256–390.

    Google Scholar 

  • Labarre J., Thuriaux, P., and Chauvat, F., 1978, Genetic analysis of amino acid transport in the facultatively heterotrophic cyanobacterium Synechocystis sp. strain 6803, J. Bacteriol. 169: 4668–4673.

    Google Scholar 

  • Ladha, J. K., Rowell, P., and Stewart W. D. P., 1978, Effects of 5-hydroxylysine on acetylene reduction and NH4+ assimilation in the cyanobacterium Anabaena cylindrica, Biochem. Biophys. Res. Commun. 83: 688–696.

    PubMed  CAS  Google Scholar 

  • Lambert, G. R., and Smith, G. D., 1981, The hydrogen metabolism of cyanobacteria, Biol. Rev. 56: 589–660.

    CAS  Google Scholar 

  • Latorre, C., Lee, J. H., Spiller, H., and Shanmugam, K. T., 1986, Ammonium ion excreting cyanobacterial mutant as a source of nitrogen for the growth of rice: A feasibility study, Biotechnol. Lett. 8: 507–512.

    Google Scholar 

  • Laufer, L., Gutcho, S., Castro, T., and Grennen, R., 1964, Preparation of radioactive biochemicals by use of yeast, Biotechnol. Bioeng. 6: 127–146.

    CAS  Google Scholar 

  • Lea, P. J., Joy, K. W., Ramos, J. L., and Guerrero, M. G., 1984, The action of 2-amino4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants, Phytochemistry 23: 1–6.

    CAS  Google Scholar 

  • Lee, Y.-K., 1986, Enclosed bioreactors for the mass cultivation of phytosynthetic microorganisms: The future trend, Trends Biotechnol. 4: 186–189.

    CAS  Google Scholar 

  • Lenaz, G., 1985, Coenzyme Q: Biochemistry, Bioenergetics and Clinical Applications of Ubiquinone, Wiley, New York.

    Google Scholar 

  • Litchfield, J. H., 1983, Single cell proteins, Science 219: 740–746.

    PubMed  CAS  Google Scholar 

  • Lorenz, M. G., and Krumbein, W. E., 1985, Uranium mobilization from low-grade ore by cyanobacteria, Appl. Microbiol. Biotechnol. 21: 374–377.

    CAS  Google Scholar 

  • Lumpkin, T. A., and Plucknett, D. L., 1982, Azolla as a Green Manure. Use and Management in Crop Production, Westview Press, Bowker Publishing Co., Epping.

    Google Scholar 

  • MacRae, I. C., 1985, Removal of pesticides in water by microbial cells adsorbed to magnetite, Water Res. 19: 825–830.

    CAS  Google Scholar 

  • MacRae, I. C., 1986, Removal of chlorinated hydrocarbons from water and wastewater by bacterial cells adsorbed to magnetite, Water Res. 20: 1149–1152.

    Google Scholar 

  • Mao, X.-Y., Miyake, J., and Kawamura, S., 1986, Screening photosynthetic bacteria for hydrogen production from organic acids, J. Ferment. Technol. 64: 245–249.

    CAS  Google Scholar 

  • Martinez, A., Llama, M. J., Alana, A., and Serra, J. L., 1989, Sustained photoproduction of ammonia from nitrate or nitrite by permeabilized cells of the cyanobacterium Phormidium laminosum, J. Photochem. Photobiol. B 3: 269–279.

    CAS  Google Scholar 

  • Mason, C. P., Edwards, K. R., Carlson, R. E., Pignatello, J., Gleason, F. K., and Wood, J. M., 1982, Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni, Science 215: 400–402.

    PubMed  CAS  Google Scholar 

  • Matsunaga, T., and Izumida, H., 1984, Seawater-based methane production from blue-green algae biomass by marine bacteria coculture, Biotechnol. Bioeng. Symp. 14: 407–418.

    CAS  Google Scholar 

  • Matsunaga, T., Nakamura, N., Tsuzaki, N., and Takeda, H., 1988, Selective production of glutamate by an immobilized marine blue-green alga, Synechococcus sp., Appl. Microbiol. Biotechnol. 28: 373–376.

    CAS  Google Scholar 

  • Metting, B., and Pyne, J. W., 1986, Biologically active compounds from microalgae, Enzyme Microb. Technol. 8: 386–394.

    CAS  Google Scholar 

  • Mian, M. H., and Stewart, W. D. P., 1985, Fate of nitrogen applied as Azolla and blue-green-algae (cyanobacteria) in waterlogged rice soils—A 15N tracer study, Plant Soil 83: 363370.

    Google Scholar 

  • Mitsubishi Gas and Chemicals, 1986, Production of coenzyme Q10, Japanese Patent J6 1192294.

    Google Scholar 

  • Mitsui, A., Phlips, E. J., Kumazawa, S., Reddy, K. J., Ramachandran, S., Matsunaga, T., Haynes, L., and Ikemoto, H., 1983, Progress in research toward outdoor biological hydrogen production using solar energy, sea water, and marine photosynthetic microorganisms, Ann. N. Y. Acad. Sci. 413: 515–530.

    Google Scholar 

  • Miyake, J., Mao, X.-Y., and Kawamura, S., 1984, Photoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacterium and Clostridium butyricum, J. Ferment. Technol. 62: 531–535.

    CAS  Google Scholar 

  • Miyamoto, K., Ohata, S., Nawa, Y., Mori, Y., and Miura, Y., 1987, Hydrogen production by a mixed culture of a green alga, Chlamydomonas reinhardtii and a photosynthetic bacterium, Rhodospirillum rubrum, Agric. Biol. Chem. 51: 1319–1324.

    CAS  Google Scholar 

  • Moore, B. S., Chen, J. L., Patterson, M. L., and Moore, R. E., 1991, Paracyclophanes from blue-green algae, J. Am. Chem. Soc., 112: 4061–4063.

    Google Scholar 

  • Moore, R. E., 1982, Toxins, anticancer agents, and tumour promoters from marine prokaryotes, Pure Appl. Chem. 54: 1919–1934.

    CAS  Google Scholar 

  • Moore, R. E., and Patterson, G. M. L., 1986, Hapalindoles, European Patent Application EP 171. 283.

    Google Scholar 

  • Moore, R. E., Cheuk, C., and Patterson, G. M. L., 1984, Hapalindoles: New alkaloids from the blue-green alga Hapalosiphon fontinalis, J. Am. Chem. Soc. 106: 6456–6457.

    CAS  Google Scholar 

  • Moore, R. E., Patterson, G. M. L., Mynderse, J. S., Barchi, J. J., Norton, T. R., Furusawa, E., and Furusawa, S., 1986, Toxins from cyanophytes belonging to the Scytonemataceae, Pure Appl. Chem. 58: 263–271.

    CAS  Google Scholar 

  • Moore, R. E., Patterson, G. M. L., and Carmichael, W. W., 1988, New pharmaceuticals from cultured blue-green algae, Mem. Calif. Acad. Sci. 1988: 143–150.

    Google Scholar 

  • Mortensen, L. E., 1978, The role of dihydrogen and hydrogenase in nitrogen fixation, Biochimie 60: 219–223.

    Google Scholar 

  • Musgrave, S. C., Kerby, N. W., Codd, G. A., and Stewart, W. D. P., 1982, Sustained ammonia production by immobilized filaments of the nitrogen-fixing cyanobacterium Anabaena 27893, Biotechnol. Lett. 4: 647–652.

    CAS  Google Scholar 

  • Musgrave, S. C., Kerby, N. W., Codd, G. A., Rowell, P., and Stewart, W. D. P., 1983, Reactor types for the utilization of immobilized photosynthetic microorganisms, Process Biochem. (Suppl.) 1983: 184–190.

    Google Scholar 

  • Mynderse, J. S., Moore, R. E., Kashiwagi, M., and Norton, T. R., 1977, Antileukemia activity in the Oscillatoriaceae: Isolation of debromoaplysiatoxin from Lyngbya, Science 196: 538540.

    Google Scholar 

  • Nejedly, Z., Filip, J., and Grunberger, D., 1968, Preparation of 14Clabelled nucleic acid components of high specific activity from Chlorella pyrenoidosa, in: Proceedings of the Second International Conference on Methods of Preparing and Storing Labelled Compounds ( J. Sirchia, ed.), European Atomic Energy Commission, Brussels, pp. 527–536.

    Google Scholar 

  • Nikandrov, V. V., Shlyk, M. A., Gogotov, I. N., and Krasnovsky, A. A., 1988, Efficient photoinduced electron transfer from inorganic semiconductor TiO2 to bacterial hydrogenase, FEBS Lett. 234: 111–114.

    CAS  Google Scholar 

  • Niven, G. W., Kerby, N. W., Rowell, P., Foster, C. A., and Stewart, W. D. P., 1988a, The effect of detergents on amino acid liberation by the N2-fixing cyanobacterium Anabaena variabilis, J. Gen. Microbiol. 134: 689–695.

    CAS  Google Scholar 

  • Niven, G. W., Kerby, N. W., Rowell, P., and Stewart, W. D. P., 1988b, The regulation of aromatic amino acid biosynthesis in amino acid liberating mutant strains of Anabaena variabilis, Arch. Microbiol. 150: 272–277.

    CAS  Google Scholar 

  • Noparatnaraporn, N., Wongkornchawalit, W., Kantachote, D., and Nagai, S., 1986a, SCP production of Rhodopseudomonas sphaeroides on pineapple wastes, J. Ferment. Technol. 64: 137–143.

    CAS  Google Scholar 

  • Noparatnaraporn, N., Sasaki, K., Nishizawa, Y., and Nagai, S., 1986b, Stimulation of vitamin B12 formation in aerobically-grown Rhodopseudomonas gelatinosa under microaerobic condition, Biotechnol. Lett. 8: 491–496.

    CAS  Google Scholar 

  • Noparatnaraporn, N., Trakulnaleumsai, S., Silveira, R. G., Nishizawa, Y., and Nagai, S., 1987, SCP production by a mixed culture of Rhodocyclus gelatinosus and Rhodobacter sphaeroides from cassava waste, J. Ferment. Technol. 65: 11–16.

    CAS  Google Scholar 

  • Norton, R. S., and Wells, R. J., 1982, A series of chiral polybrominated biindoles from the marine blue-green alga Rivularia firma. Application of 13C NMR spin—lattice relaxation data and 13C–1H coupling constants to structure elucidation,/ Am. Chem. Soc. 104: 36283635.

    Google Scholar 

  • Ochiai, H., Shibata, H., Sawa, Y., and Katoh, T., 1980, “Living electrode” as a long-lived photoconverter for biophotolysis of water, Proc. Natl. Acad. Sci. USA 77:2442–2444.

    Google Scholar 

  • Ochiai, H., Shibata, H., Sawa, Y., Shoga, M., and Ohta, S., 1983, Properties of semiconductor electrodes coated with living films of cyanobacteria, Appl. Biochem. Biotechnol. 8: 289303.

    Google Scholar 

  • Odom, J. M., and Wall, J. D., 1983, Photoproduction of H2 from cellulose by an anaerobic bacterial coculture, Appi. Environ. Microbiol. 45: 1300–1305.

    CAS  Google Scholar 

  • Oswald, W. J., 1988a, Micro-algae and waste-water treatment, in: Micro-algal Biotechnology ( M. A. Borowitzka and L. J. Borowitzka, eds.), Cambridge University Press, Cambridge, pp. 305–328.

    Google Scholar 

  • Oswald, W. J., 1988b, Large-scale algal’ culture systems (engineering aspects), in: Micro-algal Biotechnology ( M. A. Brotowitzka and L. J. Borowitzka, eds.), Cambridge University Press, Cambridge, pp. 357–394.

    Google Scholar 

  • Palmer, C. M., 1969, A composite rating of algae tolerating organic loading,/ Phycol. 5: 78–82.

    Google Scholar 

  • Patterson, M. L., Baldwin, C. L., Bolis, C. M., Caplan, F. R., Karuso, H., Larsen, L. K., Levine, I. A., Moore, R. E., Nelson, C. S., Tschappat, D., and Tuang, G. D., 1991, Antineoplastic activity of cultured blue-green algae (Cyanophyta), J. Phycol. 27: 530–536.

    Google Scholar 

  • Peschek, G. A., 1979a, Aerobic hydrogenase activity in Anacystic nidulans the oxyhydrogen reaction, Biochim. Biophys. Acta 548: 203–215.

    PubMed  CAS  Google Scholar 

  • Peschek, G. A., 1979b, Evidence for two functionally distinct hydrogenases in Anacystis nidulans, Arch. Microbiol. 123: 81–92.

    CAS  Google Scholar 

  • Pignatello, J. J., Porwoll, J., Carlson, R. E., Xavier, A., Gleason, F. K., and Wood, J. M., 1983, Structure of the antibiotic cyanobacterin, a chlorine-containing r-lactone from the freshwater cyanobacterium Scytonema hofmanni, J. Org. Chem. 48: 4035–4037.

    CAS  Google Scholar 

  • Planchard, A., Mignot, L., Jouenne, T., and Junter, G.-A., 1989, Photoproduction of molecular hydrogen by Rhodospirillum rubrum immobilized in composite agar layer/microporous membrane structures, Appl. Microbiol. Biotechnol. 31: 49–54.

    CAS  Google Scholar 

  • Polukhina, L. E., Sakhurieva, G. N., and Shestakov, S. V., 1982, Ethylenediamine-resistant Anabaena variabilis mutants with derepressed nitrogen-fixing system, Microbiology 51: 9095.

    Google Scholar 

  • Ponnamperuma, F. N., 1976, Physiochemical properties of submerged soils in relation to fertility, in: The Fertility of Paddy Soils and Fertilizer Applications. Compiled by Food and Fertilizer Technology Centre for the Asian and Pacific Regions, Taiwan, pp. 1–27.

    Google Scholar 

  • Ramos, J. L., Guerrero, M. G., and Losada, M., 1982a, Photoproduction of ammonia from nitrate by Anacystis nidulans cells, Biochim. Biophys. Acta 679: 323–330.

    CAS  Google Scholar 

  • Ramos, J. L., Guerrero, M. G., and Losada, M., 1982b, Sustained photoproduction of ammonia from nitrate by Anacystis nidulans, Appl. Environ, Microbiol. 44: 1020–1025

    CAS  Google Scholar 

  • Ramos, J. L., Guerrero, M. G., and Losada, M., 1984, Sustained photoproduction of ammonia from dinitrogen and water by the nitrogen-fixing cyanobacterium Anabaena sp. strain ATCC 33047, Biotechnol. Bioeng. 24: 566–571.

    Google Scholar 

  • Rao, K. K., and Hall, D. 0., 1988, Hydrogenases: Isolation and assay, Meth. Enzymol. 167: 501509.

    Google Scholar 

  • Rawson, D. M., Willmer, A. J., and Cardosi, M. F., 1987, The development of whole cell biosensors for on-line screening of herbicide pollution of surface waters, Toxicity Assessment 2: 325–340.

    CAS  Google Scholar 

  • Rawson, D. M., Willmer, A. J., and Turner, A. P. F., 1989, Whole-cell biosensors for environmental monitoring, Biosensors 4: 299–311.

    PubMed  CAS  Google Scholar 

  • Reed, R. H., and Gadd, G. M., 1990, Metal tolerance in eukaryotic and prokaryotic algae, in: Heavy Metal Tolerance in Plants—Evolutionary Aspects ( J. Shaw, ed.), CRC Press, Boca Raton, Florida, pp. 105–118.

    Google Scholar 

  • Reed, R. H., Warr, S. R. C., Kerby, N. W, and Stewart, W. D. P., 1986, Osmotic shock-induced release of low molecular weight metabolites from free-living and immobilised cyanobacteria, Enzyme Microb. Technol. 8: 101–104.

    CAS  Google Scholar 

  • Reglinski, A., Rowell, P., Kerby, N. W., and Stewart, W. D. P., 1989, Characterization of methylammonium/ammonium transport in mutant strains of Anabaena variabilis resistant to ammonium analogues, J. Gen. Microbiol. 135: 1441–1451.

    CAS  Google Scholar 

  • Riccardi, G., Sora, S., and Ciferri, 0., 198la, Production of amino acids by analog-resistant mutants of the cyanobacterium Spirulina platensis, J. Bacteriol. 147: 1002–1007.

    Google Scholar 

  • Riccardi, G., Sanangelatoni, D., Carboera, D., Savi, A., and Ciferri, O., 1981b, Characterization of mutants of Spirulina platensis resistant to amino acid analogues, FEMS Microbiol. Lett. 12: 333–336.

    CAS  Google Scholar 

  • Richmond, A. (ed.), 1986, CRC Handbook of Microalgal Mass Culture, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Rivera-Ortiz, J. M., and Burris, R. H., 1975, Interactions among substrates and inhibitors of nitrogenase, J. Bacteriol. 123: 537–545.

    PubMed  CAS  Google Scholar 

  • Roberts, R. B., Cowie, D. B., Abelson, P. H., Bolton, E. T., and Britten, R. J., 1955, Studies of Biosynthesis in Escherichia coli, Carnegie Institute of Washington, Washington, D.C.

    Google Scholar 

  • Roberts, R. J., 1987, Restriction and modification enzymes and their isoschizomers, Nucleic Acid Res. 15: 189–218.

    Google Scholar 

  • Rodgers, G. A., Bergman, B., Henriksson, E., and Urdis, M., 1979, Utilization of blue green algae as biofertilizers, Plant Soil 52: 99–107.

    CAS  Google Scholar 

  • Roger, P. A., and Kulasooriya, S. A., 1980, Blue-Green Algae and Rice, IRRI, Manila.

    Google Scholar 

  • Rother, J. A., Aziz, A., Karim, N. H., and Whitton, B. A., 1988, Ecology of deepwater ricefields in Bangladesh 4. Nitrogen fixation by blue-green algal communities, Hydrobiologia 169: 43–56.

    Google Scholar 

  • Rowell, P., and Kerby, N. W., 1991, Cyanobacteria and their symbionts in: Biology and Biochemistry of Nitrogen Fixation (M. J. Dilworth and A. R. Glenn, eds.), Elsevier, New York, pp. 373–407.

    Google Scholar 

  • Rowell, P., Rai, A. N., and Stewart, W. D. P., 1985, Studies on the nitrogen metabolism of the lichens Peltigera aphthosa and Peltigera canina, in: Lichen Physiology and Cell Biology ( D. H. Brown, ed.), Plenum Press, New York, pp. 145–160.

    Google Scholar 

  • Roychoudhury, P., Krishnamurti, G. S. R., and Venkataraman, G. S., 1980, Effect of algal inoculation on soil aggregation in rice soils, Phykos 19: 224–227.

    Google Scholar 

  • Sakhurieva, G. N., Polukhina, L. E., and Shestakov, S. V., 1982, Glutamine synthetase in Anabaena variabilis mutants with derepressed nitrogenase, Microbiology 51: 308–312.

    CAS  Google Scholar 

  • Sasaki, K., Noparatnaraporn, N., Hayashi, M., Nishizawa, Y., and Nagai, S., 1981, Single-cell protein production by treatment of soybean wastes with Rhodopseudomonas gelatinosa, J. Ferment. Technol. 59: 471–477.

    CAS  Google Scholar 

  • Sasaki, K., Ikeda, S., Nishizawa, Y., and Hayashi, M., 1987, Production of 5-aminolevulinic acid by photosynthetic bacteria, J. Ferment. Technol. 65: 511–515.

    CAS  Google Scholar 

  • Sasaki, K., Tanaka, T., Nishizawa, Y., and Hayashi, M., 1990, Production of a herbicide, 5aminolevulinic acid, by Rhodobacter spaeraides using the effluent of swine waste from an anaerobic digester, Appl. Microbiol. Biotechnol. 32: 727–731.

    CAS  Google Scholar 

  • Sawa, Y., Kanayama, K., and Ochiai, H., 1982, Photosynthetic regeneration of ATP using a strain of thermophilic blue-green algae, Biotechnol. Bioeng. 24: 305–315.

    PubMed  CAS  Google Scholar 

  • Sawa, Y., Shindo, H., Nishimura, S., and Ochiai, H., 1986, Photosynthetic glutathione production using intact cyanobacterial cells, Agric. Biol. Chem. 50: 1361–1363.

    CAS  Google Scholar 

  • Saxena, P. N., Ahmad, M. R., Shyam, R., and Amla, D. V., 1983, Cultivation of Spirulina in sewage for poultry feed, Experientia 39: 1077–1083.

    CAS  Google Scholar 

  • Schwartz, R. E., Hirsch, C. F., Springer, J. P., Pettibone, D. J., and Zink, D. L., 1987, Unusual cyclopropane-containing hapalindolinones from a cultured cyanobacterium, J. Org. Chem. 52: 3704–3706.

    CAS  Google Scholar 

  • Seiko-Epson, 1986, Cytostatic drug containing polysaccharides, Japanese Patent J6 1158–926.

    Google Scholar 

  • Shi, D.J., Brouers, M., Hall, D. O., and Robins, R. J., 1987, The effects of immobilization on the biochemical, physiological and morphological features of Anabaena azollae, Planta 172: 298–308.

    Google Scholar 

  • Shinohara, K., Okura, Y., Koyano, T., Murakami, H., Kim, E.-H., and Omura, H., 1986, Growth-promoting effects of an extract of a thermophillic blue-green alga, Synechococcus elongatus var. on human cell lines, Agric. Biol. Chem. 50: 2225–2230.

    CAS  Google Scholar 

  • Shinohara, K., Okura, Y., Koyano, T., Murakami, H., and Omura, H., 1988, Algal phycocyanins promote growth of human cells in culture, In Vitro Cell. Dev. Biol. 24: 1057–1060.

    PubMed  CAS  Google Scholar 

  • Singh, A. L., and Singh P. K., 1986, Comparative effects of Azolla and blue-green algae in combination with chemical N fertilizer on rice crop, Proc. Indian Acad. Sci. Plant Sci. 96: 147–152.

    Google Scholar 

  • Singh, A. L., and Singh, P. K., 1987, Comparative study on Azolla and blue-green algae dual culture with rice, Isr. J. Bot. 36: 53–61.

    Google Scholar 

  • Singh, R. N., 1961, The Role of Blue-Green Algae in Nitrogen Economy of Indian Agriculture, Indian Council of Agricultural Research, New Delhi.

    Google Scholar 

  • Spiller, H., Latorre, C., Hassan, M. E., and Shanmugam, K. T., 1986, Isolation and characterisation of nitrogenase-derepressed mutant strains of the cyanobacterium Anabaena variabilis, J. Bacteriol. 132: 596–603.

    Google Scholar 

  • Stadler, T., Mollion, J., Verdus, M.-C., Karamanos, Y., Morvan, H., and Christiaen, D. (eds.), 1988, Algal Biotechnology, Elsevier, London.

    Google Scholar 

  • Stanier, R. Y., Pfennig, N., and Trüper, H. G., 1981, Introduction to the phototrophic prokaryotes, in: The Prokaryotes, Vol. 1 ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balowa, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. 197–211.

    Google Scholar 

  • Stewart, J. B., Bornemann, V., Chen, J. L., Moore, R. E., Caplan, F. R., Karuso, H., Larsen, L. K., and Patterson, G. M. L., 1988, Cytotoxic, fungicidal nucleosides from blue green algae belonging to the Scytonemataceae, J. Antibiot. 41: 1048–1056.

    PubMed  CAS  Google Scholar 

  • Stewart, W. D. P., 1963, Liberation of extracellular nitrogen by two nitrogen-fixing blue-green algae, Nature 200: 1020–1021.

    PubMed  CAS  Google Scholar 

  • Stewart, W. D. P., 1980a, Some aspects of structure and function in N2-fixing cyanobacteria, Annu. Rev. Microbiol. 34: 497–536.

    PubMed  CAS  Google Scholar 

  • Stewart, W. D. P., 1980b, Systems involving blue-green algae (cyanobacteria), in: Methods for Evaluating Biological Nitrogen Fixation ( F. J. Bergersen, ed.), Wiley, London, pp. 583–635.

    Google Scholar 

  • Stewart, W. D. P., and Rowell, P., 1975, Effects of L-methionine-n,L-sulphoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production in Anabaena cylindrica, Biochem. Biophys. Res. Commun. 65: 846–857.

    PubMed  CAS  Google Scholar 

  • Stewart, W. D. P., Rowell, P., Ladha, J. K., and Sampaio, M. J. A. M., 1979, Blue-green algae (cyanobacteria)—Some aspects related to their role as sources of fixed nitrogen in paddy soils, in: Proceedings of Nitrogen and Rice Symposium, IRRI, Manila, pp. 263–283.

    Google Scholar 

  • Stewart, W. D. P., Rowell, P., and Rai, A. N., 1983, Cyanobacteria–eukaryotic plant symbioses, Ann. Microbiol. (Inst. Pasteur) 134B: 205–228.

    Google Scholar 

  • Strayer, R. F., Baska, D. F., and Knott, W. M., 1985, Biological hydrogen production as a potential renewable fuel source for the Shuttle Transportation System, Abstr. Ann. Meet. Am. Soc. Microbiol. 1985: 792.

    Google Scholar 

  • Subramanian, G., and Shanmugasundaram, S., 1986, Uninduced ammonia release by the nitrogen-fixing cyanobacterium Anabaena, FEMS Microbiol. Lett. 37: 151–154.

    CAS  Google Scholar 

  • Takakuwa, S., Odom, J. M., and Wall, J. D., 1983, Hydrogen uptake deficient mutants of Rhodopseudomonas capsulata, Arch. Microbiol. 136: 20–25.

    CAS  Google Scholar 

  • Tanaka, K., Tamamushi, R., and Ogawa, T., 1985, Bioelectrochemical fuel-cells operated by the cyanobacterium Anabaena variabilis, J. Chem. Technol. Biotechnol. 35B: 191–197.

    Google Scholar 

  • Tanaka, K., Kashiwagi, N., and Ogawa, T., 1988, Effects of light on the electrical output of bioelectrochemical fuel cells containing Anabaena variabilis M-2: mechanisms of the post-illumination burst, J. Chem. Technol. Biotechnol. 42: 235–240.

    CAS  Google Scholar 

  • Tandeau de Marsac, N., de la Torre, F., and Szulmajster, J., 1987, Expression of the larvicidal gene of Bacillus sphaericus 1593M in the cyanobacterium Anacystic nidulans R2, Mol. Gen. Genet. 209: 396–398.

    Google Scholar 

  • Tapie, P., and Bernard, A., 1988, Microalgae production: Technical and economic evaluations, Biotechnol. Bioeng. 32: 873–885.

    PubMed  CAS  Google Scholar 

  • Terry, K. L., and Raymond, L. P., 1985, System design for the autotrophic production of microalgae, Enzyme Microb. Technol. 7: 474–487.

    Google Scholar 

  • Thomas, S. P., Zaritsky, A., and Boussiba, S., 1990, Ammonium excretion by an L-methionineDL-sulfoximine-resistant mutant of the rice field cyanobacterium Anabaena siamensis, Appl. Environ. Microbiol. 56: 3499–3504.

    PubMed  CAS  Google Scholar 

  • Tovey, K. C., Spiller, G. H., Oldham, K. G., Lucas, N., and Carr, N. G., 1974, A new method for the preparation of uniformly 14C-labelled compounds by using Anacystis nidulans, Biochem. J. 142: 47–56.

    PubMed  CAS  Google Scholar 

  • Tsur, Y., and Hochman, E., 1986, Economic aspects of the management of algal production, in: CRC Handbook of Microalgal Mass Culture ( A. Richmond, ed.), CRC Press, Boca Raton, Florida, pp. 473–483.

    Google Scholar 

  • United Kingdom Atomic Energy Authority, 1973, Improvements in or relating to 14C-labelled compounds, UK Patent GB 1342098.

    Google Scholar 

  • University of Dundee, 1989, Production of organic compounds, International Patent Application PCT/GB88/00510.

    Google Scholar 

  • Van der Oost, J., Kanneworff, W. A., Krab, K., and Kraayenhof, R., 1987, Hydrogen metabolism of three unicellular nitrogen-fixing cyanobacteria, FEMS Microbiol. Lett. 48: 41–45.

    Google Scholar 

  • Vazquez, E., Buzaleh, A. M., Wider, E., and Batlle, A. M. C., 1988, Soluble and immobilized Rhodopseudomonas palustris rhodanese: Optimal conditions, Biotechnol. Appl. Biochem. 10: 131–136.

    CAS  Google Scholar 

  • Venkataraman, G. S., and Neelakantan, S., 1967, Effect of cellular constituents of the nitrogen-fixing blue-green alga Cylindrospermum muscicola on the growth of rice seedlings, J. Gen. Microbiol. 13: 53–58.

    CAS  Google Scholar 

  • Venkataraman, L. V., 1986, Blue-green algae as biofertilizer, in: CRC Handbook of Microalgal Mass Culture ( A. Richmond, ed.), CRC Press, Boca Raton, Florida, pp. 455–471.

    Google Scholar 

  • Vincenzini, M., De Philippis, R., Ena, A., and Florenzano, G., 1986, Ammonia photoproduction by Cyanospira rippkae cells “entrapped” in dialysis tube, Experientia 42: 1040–1043.

    CAS  Google Scholar 

  • Von Felten, P., Zürrer, H., and Bachofen, R., 1985, Production of molecular hydrogen with immobilised cells of Rhodospirillum rubrum, App. Microbiol. Biotechnol. 23: 15–20.

    Google Scholar 

  • Vymazal, J., 1987, Toxicity and accumulation of cadmium with respect to algae and cyanobacteria: A review, Toxicity Assessment 2: 387–415.

    CAS  Google Scholar 

  • Wall, J. D., and Gest, H., 1979, Derepression of nitrogenase activity in glutamine auxotrophs of Rhodopseudomonas capsulata, J. Bacteriol. 137: 1459–1463.

    CAS  Google Scholar 

  • Wall, J. D., Weaver, P. F., and Gest, H., 1975, Genetic transfer of nitrogenase-hydrogenase activity in Rhodopseudomonas capsulata, Nature 258: 630–631.

    CAS  Google Scholar 

  • Watanabe, I., and Roger, P. A., 1984, Nitrogen fixation in wetland rice, in: Current Developments in Biological Nitrogen Fixation ( N. S. Subba Rao, ed.), Edward Arnold, London, pp. 237–276.

    Google Scholar 

  • Watanabe, I., Ventura, W., Cholitkul, W., Roger, P. A., and Kulasooriya, S. A., 1982, Potential of biological nitrogen fixation in deep water rice, in: Proceedings of the 1981 International Deepwater Rice Workshop, IRRI, Manila, pp. 191–200.

    Google Scholar 

  • Weisshaar, H., and Böger, P., 1983, Nitrogenase activity of the non-heterocystous cyanobacterium Phormidium foveolarum, Arch. Microbiol. 136: 270–274.

    CAS  Google Scholar 

  • Whitton, B. A., and Roger, P. A., 1989, Use of blue-green algae and Azolla in rice culture, in: Microbial Inoculation of Crop Plants ( R. Campbell and R. M. Macdonald, eds.), IRL Press, Oxford, pp. 89–100.

    Google Scholar 

  • Willison, J. C., Jouanneau, Y., Colbeau, A., and Vignais, P. M., 1983, H2 metabolism in photosynthetic bacteria and relationship to N2 fixation, Ann. Microbiol. (Inst. Pasteur) 134B: 115–135.

    Google Scholar 

  • Wyman, M., Gregory, R. P. F., and Carr, N. G., 1985, Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2, Science 230: 818–820.

    PubMed  CAS  Google Scholar 

  • Xiankong, Z., Haskell, J. B., Tabita, R., and Van Baalen, C., 1983, Aerobic hydrogen production by the heterocystous cyanobacteria Anabaena spp. strains CA and 1F, J. Bacterial. 156: 1118–1122.

    CAS  Google Scholar 

  • Yamada, K., Kinoshita, S., Tsunoda, T., and Aida, K., 1972, The Microbiol Production of Amino Acids, Halstead Press, New York.

    Google Scholar 

  • Zimmerman, W. J., and Boussiba, S., 1987, Ammonia assimilation and excretion in an asymbiotic strain of Anabaena azollae from Azolla filiculoides Lam, J. Plant Physiol. 127: 443–450.

    CAS  Google Scholar 

  • Zürrer, H., 1982, Hydrogen production by photosynthetic bacteria, Experientia 38: 64–67.

    Google Scholar 

  • Zürrer, H., and Bachofen, R., 1982, Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture. Biomass 2: 165–174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kerby, N.W., Rowell, P. (1992). Potential and Commercial Applications for Photosynthetic Prokaryotes. In: Mann, N.H., Carr, N.G. (eds) Photosynthetic Prokaryotes. Biotechnology Handbooks, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1332-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1332-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1334-3

  • Online ISBN: 978-1-4757-1332-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics