Potential and Commercial Applications for Photosynthetic Prokaryotes

  • Nigel W. Kerby
  • Peter Rowell
Part of the Biotechnology Handbooks book series (BTHA, volume 6)

Abstract

The cyanobacteria, together with phototrophic green and purple bacteria and prochlorophytes, share a basic prokaryotic cellular organization and together constitute the photosynthetic prokaryotes (see Stanier et al., 1981). A major distinction between the photosynthetic bacteria and cyanobacteria is the presence of oxygenic photosynthesis, with two photosystems acting in series, in cyanobacteria and of anoxygenic photosynthesis, using only one photosystem, in photosynthetic bacteria. In 1952 the first Algal Mass Culture Symposium was held to consider potential applications of microalgae (Burlew, 1953) and there has since been an increasing interest in this field. Oxygenic photosynthesis is a unique means of utilizing cheap substrates (CO2, H2O, and solar energy) for the primary production of organic compounds and many potential applications of cyanobacteria rely on this process. Since photosynthetic bacteria carry out anoxygenic photosynthesis, their use requires the provision of organic or inorganic electron donors; for example, organic wastes. Certain species of cyanobacteria and photosynthetic bacteria have the ability to fix atmospheric dinitrogen, catalyzed by the enzyme nitrogenase. The agronomic potential of nitrogen fixation by cyanobacteria, particularly in the cultivation of rice, is well documented, as is the production of H2, catalyzed by nitrogenase, in both photosynthetic bacteria and cyanobacteria.

Keywords

Photosynthetic Bacterium Rhodobacter Sphaeroides Rhodospirillum Rubrum Rhodopseudomonas Palustris Anabaena Variabilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeliovich, A., 1986, Algae in wastewater oxidation ponds, in: CRC Handbook of Microalgal Mass Culture ( A. Richmond, ed.), CRC Press, Boca Raton, Florida, pp. 331–338.Google Scholar
  2. Abul-Hajj, Y. J., and Qian, X., 1986, Transformation of steroids by algae,J. Nat. Prod. 49: 244–248.Google Scholar
  3. Achtnich, W., Moawad, A. M., and Johal, A. M., 1986, Azolla, a biofertilizer for rice, Int. J. Trop. Agric. 4: 188–211.Google Scholar
  4. Aiken, C., and Gumport, R. I., 1988, Restriction endonuclease RsrI from Rhodobacter sphaeroides, an isoschizomer of EcoRI: Purification and properties, Nucleic Acids Res. 16: 7901–7916.PubMedGoogle Scholar
  5. Antarikanonda, P., 1984, Production of extracellular free amino acids by cyanobacterium Anabaena siamensis Antarikanonda, Curr. Microbiol. 11: 191–196.Google Scholar
  6. Asada, Y., and Kawamura, S., 1985, Hydrogen evolving activity among the genus, Microcystis, under dark and anaerobic conditions, Rep. Ferment. Res. Inst. Japan 63: 39–54.Google Scholar
  7. Asada, Y., Tomizuka, N., and Kawamura, S., 1985, Prolonged hydrogen production by a cyanobacterium (blue-green alga), Anabaena sp., J. Ferment. Technol. 63: 85–90.Google Scholar
  8. Avissar, Y. J., 1983, 5-Aminolevulinate synthesis is permeabilized filaments of the blue-green alga Anabaena variabilis, Plant Physiol. 72: 200–203.Google Scholar
  9. Barchi, J. J., Norton, T. R., Furusawa, E., Patterson, G. M. L., and Moore, R. E., 1983, Identification of a cytotoxin from Tolypothrix byssoidea as tubercidin, Phytochemistry 22: 2851–2852.Google Scholar
  10. Barchi, J. J., Moore, R. E., and Patterson, G. M. L., 1984, Acutiphycin and 20,21-dihydroacutiphycin, new antineoplastic agents from the cyanophyte Oscillatoria acutissima, J. Am. Chem. Soc. 106: 8193–8197.Google Scholar
  11. Belkin, S., and Padan, E., 1978, Hydrogen metabolism in the faculative anoxygenic cyanobacteria (blue-green algae) Oscillatoria limnetica and Aphanothece halophytica, Arch. Microbiol. 116: 109–111.PubMedGoogle Scholar
  12. Benemann, J. R., 1989, The future of microalgal biotechnology, in: Algal and Cyanobacterial Biotechnology ( R. C. Cresswell, T. A. V. Rees, and N. Shah, eds.), Longman, Harlow, pp. 317–337.Google Scholar
  13. Benemann, J. R., and Weare, N. M., 1974, Nitrogen fixation by Anabaena cylindrica. III. Hydrogen-supported nitrogenase activity, Arch. Microbiol. 101: 401–408.Google Scholar
  14. Benemann, J. R., Weismann, J. C., and Oswald, W. J., 1979, Algal biomass, in: Microbial Biomass, Ecomomic Microbiology, (Volume 4 ( A. H. Rose, ed.)), Academic Press, London, pp. 177–206.Google Scholar
  15. Bliznakov, E. G., and Hunt, G. L., 1987, The Miracle Nutrient Coenzyme Q jo, Bantam Books, New York.Google Scholar
  16. Bloor, S., and England, R. R., 1991, Elucidation and optimization of the medium constituents controlling antibiotic production by the cyanobacterium Nostoc muscorum, Enzyme Microb. Technol. 13: 76–81.PubMedGoogle Scholar
  17. Bollinger, R., Zürrer, H., and Bachofen, R., 1985, Production of molecular hydrogen from waste water of a sugar refinery by photosynthetic bacteria, Appl. Microbiol. Biotechnol. 23: 147–151.Google Scholar
  18. Borowitzka, M. A., 1988, Vitamins and fine chemicals from microalgae, in: Micro-algal Biotechnology ( M. A. Borowitzka and L. J. Borowitzka, eds.), Cambridge University Press, Cambridge, pp. 153–196.Google Scholar
  19. Borowitzka, M. A., and Borowitzka, L. J. (eds.), 1988, Micro-algal Biotechnology, Cambridge University Press, Cambridge.Google Scholar
  20. Borowitzka, L. J., and Borowitzka, M. A., 1989, Industrial production: Methods and economics, in: Algal and Cyanobacterial Biotechnology ( R. C. Cresswell, T. A. V. Rees, and N. Shah, eds.), Longman, Harlow, pp. 294–316.Google Scholar
  21. Bose, P., Nagpal, U. S., Venkataraman, G. S., and Goyal, S. K., 1971, Solubilization of tri-calcium phosphate by blue green algae, Curt Sci. 7: 165–166.Google Scholar
  22. Bothe, H., 1982, Hydrogen production by algae, Experientia 38: 59–64.Google Scholar
  23. Bothe, H., Nelles, H., Hager, K.-P., Papen, H., and Neuer, G., 1984, Physiology and biochemistry of N2-fixation by cyanobacteria, in: Advances in Nitrogen Fixation Research ( C. Veeger and W. E. Newton, eds.), Martinus Nijhoff/Dr. W. Junk, The Hague, pp. 199–210.Google Scholar
  24. Brouers, M., and Hall, D. 0., 1986, Ammonium and hydrogen production by immobilized cyanobacteria, J. Biotechnol. 3: 307–321.Google Scholar
  25. Burlew, J. S. (ed.), 1953, Algal Culture from Laboratory to Pilot Plant, Carnegie Institute, Washington, D. C.Google Scholar
  26. Cannell, R. J. P., Owsianka, A. M., and Walker, J. M., 1988, Results of a large-scale screening programme to detect antibacterial activity from freshwater algae, Br. Phycol. J. 23: 41–44.Google Scholar
  27. Cardellina, J. H., Marner, F.J., and Moore, R. E., 1979a, Seaweed dermatitis: Structure of lyngbyatoxin A, Science 204: 193–195.PubMedGoogle Scholar
  28. Cardellina, J. H., Moore, R. E., Arnold, E. V., and Clardy, J., 1979b, Structure and absolute configuration of malyngolide, an antibiotic from the marine blue-green alga Lyngbya majuscula Gomont, J. Org. Chem. 44: 4039–4042.Google Scholar
  29. Carmeli, S., Moore, R. E., Patterson, G. M. L., Corbett, T. H., and Valeriate, F. A., 1990a, Tantazoles: Unusual cytotoxic alkaloids from the blue-green alga Scytonema mirabile, J. Am. Chem. Soc. 112: 8195–8197.Google Scholar
  30. Carmeli, S., Moore, R. E., Patterson, G. M. L., Mori, Y., and Suzuki, M., 1990b, Isonitriles from the blue-green alga Scytonema mirabile, J. Org. Chem. 55: 4431–4438.Google Scholar
  31. Carter, D. C., Moore, R. E., Mynderse, J. S., Niemczura, W. P., and Todd, J. S., 1984, Structure of majusculamide C, a cyclic depsipeptide from Lyngbya majuscula, J. Org. Chem. 49: 236241.Google Scholar
  32. Chlorella, 1983, Method of human cell culture, U. S. Patent 4468–460.Google Scholar
  33. Chung, P., Pond, W. C., Kingsburg, J. M., Walker, E. F. and Krook, L., 1978, Production and nutritive values of Arthospira platensis, a spiral blue-green alga grown on swine wastes, J. Anim. Sci. 47: 319–330.Google Scholar
  34. Chungjatupornchai, W., 1990, Expression of the mosquitocidal-protein genes of Bacillus thuringiensis subsp. israelensis and the herbicide-resistance gene bar in Synechocystis PCC 6803, Curr. Microbiol. 21: 283–288.Google Scholar
  35. Ciferri, O., Tiboni, O., and Sanagelantoni, A. M., 1989, The genetic manipulation of cyanobacteria and its potential uses, in: Algal and Cyanobacterial Biotechnology ( R. C. Cresswell, T. A. V. Rees, and N. Shah, eds.), Longman, Harlow, pp. 239–271.Google Scholar
  36. Clément, Y., and Lanéelle, G., 1986, Glutamate excretion mechanism in Corynebacterium glutamicum: Triggering by biotin starvation or by surfactant addition, J. Gen. Microbiol. 132: 925–929.Google Scholar
  37. Cork, D., Mathers, J., Maka, A., and Srnak, A., 1985, Control of oxidative sulfur metabolism of Chlorobium limicola forma thiosulfatophilum—effect of light energy and molar flow rate, Appt. Environ. Microbiol. 49: 269–272.Google Scholar
  38. Cox, J., Kyle, D., Radmer, R., and Delente, J., 1988, Stable-isotope-labeled biochemicals from microalgae, Trends Biotechnol. 6: 279–282.Google Scholar
  39. Cresswell, R. C., Rees, T. A. V., and Shah, N. (eds.), 1989, Algal and Cyanobacterial Biotechnology, Longman, Harlow.Google Scholar
  40. Daday, A., Platz, R. A., and Smith, G. D., 1977, Anaerobic and aerobic hydrogen gas formation by the blue-green alga Anabaena variabilis, Appt. Environ. Microbiol. 34: 478–483.Google Scholar
  41. Daday, A., Mackerras, A. H., and Smith, G. D., 1985, The effect of nickel on hydrogen metabolism and nitrogen fixation in the cyanobacterium Anabaena cylindrica, J. Gen. Microbiol. 131: 231–238.Google Scholar
  42. Dadhich, K. S., Varma, A. K., and Venkataraman, G. S., 1969, The effect of Calothrix inoculation on vegetable crops, Plant Soil 31: 377–379.Google Scholar
  43. De, P. K., 1939, The role of blue-green algae in nitrogen fixation in rice fields, Proc. R. Soc. Lond. B 127: 121–139.Google Scholar
  44. De la Noue, J., and Proulx, D., 1988, Tertiary treatment of urban wastewaters by chitosanimmobilized Phormidium sp., in: Algal Biotechnology ( T. Stadler, J. Mollion, M.-C., Verdus, Y. Karamanos, H. Morvan, and D. Christiaen, eds.), Elsevier, London, pp. 159–168.Google Scholar
  45. Dutton, P. L., and Evans, W. C., 1978, Metabolism of aromatic compounds by Rhodospirillaceae, in: The Photosynthetic Bacteria ( R. K. Clayton and W. R. Sistrom, eds.), Plenum Press, New York, pp. 719–726.Google Scholar
  46. Entzeroth, M., Mead, D. J., Patterson, G. M. L., and Moore, R. E., 1985, A herbicidal fatty acid produced by Lyngbya aestuarii, Phytochemistry 24: 2875–2876.Google Scholar
  47. Entzeroth, M., Moore, R. E., Niemczura, W. P. and Patterson, G. M. L., 1986, O-Acetyl-0butyl-O-carbamoyl-O,O-dimethyl-a-cyclodextrins from the cyanophyte Tolypothrix byssoidea, J. Org. Chem. 51: 5307–5310.Google Scholar
  48. Ergo-Forsch., 1985, Coenzyme Qio production (ubiquinone), West German Patent 3416–854.Google Scholar
  49. Fallowfield, H. J., and Garrett, M. K., 1985, The treatment of wastes by algal culture,/ Appt. Bacteriol. Symp. Suppl. 1985: 187s - 205s.Google Scholar
  50. Faulkner, D. J., 1984, Marine natural products: Metabolites of marine algae and herbivorous marine molluscs, Nat. Prod. Rep. 1: 251–280.Google Scholar
  51. Fisher, N. S., 1985, Accumulation of metals by marine picoplankton, Mar. Biol. 87: 137–142.Google Scholar
  52. Flores, E., and Wolk, C. P., 1986, Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and other antibiotics that kill related strains, Arch. Microbiol. 145: 215–219.PubMedGoogle Scholar
  53. Fogg, G. E., 1952, The production of extracellular nitrogenous substances by a blue-green alga, Proc. R. Soc. Lond. B 139: 372–397.Google Scholar
  54. Fox, R. D., 1988, Nutrient preparation and low cost basin construction for village production of Spirulina, in: Algal Biotechnology ( T. Stadler, J. Mollion, M.-C. Verdus, Y. Karamanos, H. Morvan, and D. Christiaen, eds.), Elsevier, London, pp. 355–364.Google Scholar
  55. Fujiki, H., Suganuma, M., Tahira, T., Yoshioka, A., Nakayasu, M., Endo, Y., Shudo, K., Takayama, S., Moore, R. E., and Sugimura, T., 1984, New class of tumour promoters: Teleocidin, aplysiatoxin, and palytoxin, in: Cellular Interactions by Environmental Tumour Promoters ( H. Fujiki, E. Hecker, R. E. Moore, T. Sugimura, and I. B. Weinstein, eds.), Japan Scientific Society Press, Tokyo/VNU Science Press, Utrecht, pp. 37–45Google Scholar
  56. Gadd, G. M., 1988, Accumulation of metals by microorganisms and algae, in: Biotechnology—A Comprehensive Treatise, Volume 6b ( H. J. Rehm, ed.), VCH Verlagsgesellschaft, Weinheim, pp. 401–433.Google Scholar
  57. Gaisford, W. C., and Rawson, D. M., 1989, Biosensors for environmental monitoring, Measurement Control 22: 183–186.Google Scholar
  58. Gale, N. L., and Wixson, B. G., 1979, Removal of heavy metals from industrial effluents by algae, Dev. Ind. Microbiol. 20: 259–273Google Scholar
  59. Gallon, J. R., and Chaplin, A. E., 1987, An Introduction to Nitrogen Fixation, Cassell, London. Gantar, M., Kerby, N. W., Rowell, P., and Obreht, Z., 1991a, Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: I. A survey of soil cyanobacterial isolates forming associations with roots, New Phytol. 118: 477–483.Google Scholar
  60. Gantar, M., Kerby, N. W., and Rowell, P., 1991b, Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: II. An ultrastructural study, New Phytol. 118: 485–492.Google Scholar
  61. Gerwick, W. H., Lopez, A., Van Duyne, G. D., Clardy, J., Ortiz, W., and Baez, A., 1986, Hormothamnione, a novel cytotoxic styrylchromone from the marine cyanophyte Hormothamnion enteromorphoides Grunow, Tetradedron Lett. 27: 1979–1982.Google Scholar
  62. Gerwick, W. H., Reyes, S., and Alvardo, B., 1987, Two malyngamides from the Caribbean cyanobacterium Lyngbya majuscula, Phytochemistry 26: 1701–1704.Google Scholar
  63. Gerwick, W. H., Mrozek, C., Moghaddam, M. F., and Agarwal, S. K., 1989, Novel cytotoxic peptides from the tropical marine cyanobacterium, Hormothamnion enteromorphoides, 1. Discovery, isolation, and initial chemical and biological characterization of the hormothamnins from wild and cultured material, Experientia 45: 115–121.PubMedGoogle Scholar
  64. Glazer, A., and Stryer, L., 1984, Phycofluor probes, Trends Biochem. Sci. 8: 423–427.Google Scholar
  65. Gleason, F. K., and Baxa, C. A., 1986, Activity of the natural algicide, cyanobacterin, on eukaryotic microorganisms, FEMS Microbiol. Lett. 33: 85–88.Google Scholar
  66. Gleason, F. K., and Case, D. E., 1986, Activity of the natural algicide, cyanobacterin, on angiosperms, Plant Physiol. 80: 834–837.PubMedGoogle Scholar
  67. Gleason, F. K., and Paulson, J. L., 1984, Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp., Arch. Microbiol. 138: 273–277.Google Scholar
  68. Glombitza, K.-W. and Koch, M., 1989, Secondary metabolites of pharmaceutical potential, in: Algal and Cyanobacterial Biotechnology ( R. C. Cresswell, T. A. V. Rees, and N. Shah, eds.), Longman, Harlow, pp. 161–238.Google Scholar
  69. Goldman, J. C., 1979, Outdoor algal mass cultures. I. Applications, Water Res. 13: 1–19.Google Scholar
  70. Greene, P. J., Ballard, B. T., Stephenson, F., Kohr, W. J., Rodriguez, H., Rosenberg, J. M., and Boyer, H. W., 1988, Purification and characterization of the restriction endonuclease Rsr1, an isoschizomer of EcoR1, Gene 68: 43–52.PubMedGoogle Scholar
  71. Gudin, C., and Thepenier, C., 1986, Bioconversion of solar energy into organic chemicals by microalgae, Adv. Biotechnol. Processes 6: 73–110.Google Scholar
  72. Gunnison, D., and Alexander, M., 1975, Resistance and susceptibility of algae to decomposition by various microbial communities, Limnol. Oceanogr. 20: 64–70.Google Scholar
  73. Gusev, M. V. and Korhenevskaya, G., 1990, Artificial Associations, in: CRC Handbook of Symbiotic Cyanobacteria ( A. N. Raj, ed.), CRC Press, Boca Raton, Florida, pp. 173–230.Google Scholar
  74. Gustafson, K. R., Cardellina, J. H., Fuller, R. W., Weislow, S., Kiser, R. F., Snader, K. M., Patterson, G. M. L., and Boyd, M. R., 1989, AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae), J. Natl. Cancer Inst. 81: 1255–1258.Google Scholar
  75. Hageman, R. V., and Burris, R. H., 1980, Electron allocation to alternative substrates of Azotobacter nitrogenase is controlled by the electron flux through dinitrogenase, Biochim. Biophys. Acta 591: 63–75.PubMedGoogle Scholar
  76. Hall, D. O., Affolter, D. A., Brouers, M., Shi, D. J., Wang, L. W., and Rao, K. K., 1985, Photobiological production of fuels and chemicals by immobilized algae, Proc. Phytochem. Soc. Eur. 26: 161–185.Google Scholar
  77. Hall, G., Flick, M. B., and Jensen, R. A., 1980, Approach to the recognition of regulatory mutants of cyanobacteria, J. Bacterial. 143: 981–988.Google Scholar
  78. Hallenbeck, P. C., 1987, Molecular aspects of nitrogen fixation by photosynthetic prokaryotes, CRC Critical Rev. Microbiol. 14: 1–48.Google Scholar
  79. Harwood, C. S., and Gibson, J., 1988, Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris, Appl. Environm. Microbiol. 54: 712–717.Google Scholar
  80. Hashimoto, S., and Furukawa, K., 1989, Nutrient removal from secondary effluent by filamentous algae, J. Ferment. Bioeng. 67: 62–69.Google Scholar
  81. Haystead, A., Robinson, R., and Stewart, W. D. P., 1970, Nitrogenase activity in extracts of heterocystous and non-heterocystous blue-green algae, Arch. Mikrobiol. 74: 235–243.PubMedGoogle Scholar
  82. Hien, N. T., Kerby, N. W., Machray, G. C., Rowell, P., and Stewart, W. D. P., 1988, Expression of glutamine synthetase in mutant strains of the cyanobacterium Anabaena variabilis which liberate ammonia, FEMS Microbiol. Lett. 56: 337–342.Google Scholar
  83. Hirayama, O., and Katsuta, Y., 1988, Stimulation of vitamin B12 in Rhodospirillum rubrum G-9 BM, Agric. Biol. Chem. 52: 2949–2951.Google Scholar
  84. Horikoshi, T., Nakajima, A., and Sakaguchi, T., 1979, Uptake of uranium from sea water by Synechococcus elongatus, J. Ferment. Technol. 57: 191–194.Google Scholar
  85. Houchins, J. P., 1984, The physiology and biochemistry of hydrogen metabolism in cyanobacteria, Biochim. Biophys. Acta 768: 227–255.Google Scholar
  86. Houchins, J. P., and Burris, R. H., 198la, Occurrence and localization of two distinct hydrogenases in the heterocystous cyanobacterium Anabaena sp. strain 7120, J. Bacteriol. 146: 209–214Google Scholar
  87. Houchins, J. P., and Burris, R. H., 198 lb, Comparative characterization of two distinct hydrogenases from Anabaena sp. strain 7120, J. Bacteriol. 146: 215–221.Google Scholar
  88. Institute of Gas Technology, 1987, Removing sulfur compounds and carbon oxides from gas streams, U. S. Patent 4666–852.Google Scholar
  89. Ishibashi, M., Moore, R. E., and Patterson, G. M. L., 1986, Sctophycins, cytotoxic and antimycotic agents from a cyanophyte Scytonema pseudohofmanni, J. Org. Chem. 51: 5300–5306Google Scholar
  90. Jeanfils, J., and Loudeche, R., 1986, Photoproduction of ammonia by immobilized hetero- cystic cyanobacteria. Effect of nitrite and anaerobiosis, Biotechnol. Lett. 8: 265–270.Google Scholar
  91. Jensen, R. A., and Hall, G. C., 1982, Endo-oriented control of pyramidally arranged metabolic branch points, Trends Biochem. Sci. 7: 177–185.Google Scholar
  92. Jensen, T. E., Baxter, M., Rachlin, J. W., and Jani, V., 1982, Uptake of heavy metals by Plectonema boryanum (Cyanophyceae) into cellular components, especially polphosphate bodies: An X-ray energy dispersive study, Environ. Pollut. A 27: 119–127.Google Scholar
  93. Karuna-Karan, A., 1987, Product formulations from commercial scale culture of microalgae, in: World Biotech Report, Volume 1, Part 4, Online, London, pp. 37–44.Google Scholar
  94. Kellam, S. J., Cannell, R. J. P., Owsianka, A. M., and Walker, J. M., 1988, Results of large-scale screening programme to detect antifungal activity from marine and freshwater micro-algae in laboratory culture, Br. Phycol. J. 23: 45–47.Google Scholar
  95. Kentemich, T., Danneberg, G., Hundeshagen, B., and Bothe, H., 1988, Evidence for the occurrence of the alternative vanadium-containing nitrogenase in the cyanobacterium Anabaena variabilis, FEMS Microbiol. Lett. 51: 19–24.Google Scholar
  96. Kerby, N. W., Musgrave, S. C., Codd, G. A., Rowell, P., and Stewart, W. D. P., 1983, Photoproduction of ammonia by immobilized cyanobacteria, in: Biotech ‘83 Proceedings of the International Conference on the Commercial Applications and Implications of Biotechnology, Online, Northwood, pp. 1029–1036.Google Scholar
  97. Kerby, N. W., Musgrave, S. C., Shestakov, S. V., Rowell, P., and Stewart, W. D. P., 1986, Photoproduction of ammonium by immobilized mutant strains of Anabaena variabilis, Appl. Microbiol. Biotechnol. 24: 42–46.Google Scholar
  98. Kerby, N. W., Niven, G. W., Rowell, P., and Stewart, W. D. P., 1987, Photoproduction of amino acids by mutant strains of Na-fixing cyanobacteria, Apps. Microbiol. Biotechnol. 25: 547552.Google Scholar
  99. Kerby, N. W., Niven, G. W., Rowell, P., and Stewart, W. D. P., 1988, Ammonia and amino acid production by cyanobacteria, in: Algal Biotechnology ( T. Stadler, J. Mollion, M.-C. Verdus, Y. Karamanos, H. Morvan, and D. Christiaen, eds.), Elsevier, London, pp. 277–286.Google Scholar
  100. Kerby, N. W., Rowell, P., and Stewart, W. D. P., 1989, The transport, assimilation and production of nitrogenous compounds by cyanobacteria and microalgae, in: Algal and Cyanobacterial Biotechnology ( R. C. Cresswell, T. A. V. Rees, and N. Shah, eds.), Longman, Harlow, pp. 50–90.Google Scholar
  101. Kerby, N. W., Rowell, P., and Reglinski, A., 1990, Characterization of ammonia analogue resistant mutants of the cyanobacterium Anabaena variabilis, in: Inorganic Nitrogen Uptake and Metabolism in Plants and Microorganisms ( W. R. Ullrich, C. Rigano, A. Fuggi, and P. J. Aparicio, eds.), Springer-Verlag, Berlin, pp. 106–112.Google Scholar
  102. Kim, J. S., Ito, K., Izaki, K., and Takahashi, H., 1987a, Production of molecular hydrogen by a semi-continuous outdoor culture of Rhodopseudomonas sphaeroides, Agric. Biol. Chem. 51: 1173–1174.Google Scholar
  103. Kim, J. S., Ito, K., Izaki, K., and Takahashi, H., 1987b, Production of molecular hydrogen by a continuous culture under laboratory conditions, Agric. Biol. Chem. 51: 2591–2593.Google Scholar
  104. Kobayashi, M., and Kurata, S., 1978, The mass culture and cell utilization of photosynthetic bacteria, Process Biochem. 13: 27–30.Google Scholar
  105. Kohlhase, M., and Pohl, P., 1988, Saturated and unsaturated sterols of nitrogen-fixing blue-green algae (cyanobacteria), Phytochemistry 27: 1735–1740.Google Scholar
  106. Kulasooriya, S. A., Seneviratne, P. R. G., De Silva, W. S. A. G., Abeysekera, S. W., Wijesundra, C., and De Silva, A. P., 1988, Isotopic studies on N2-fixation and the availability of its nitrogen to rice, Symbiosis 6: 151–166.Google Scholar
  107. Kuwada, Y., and Ohata, Y., 1987, Hydrogen production by an immobilized cyanobacterium, Lyngbya sp., J. Ferment. Technol. 65: 597–602.Google Scholar
  108. Kyowa-Hakko, 1985, Process for producing coenzyme Qio, Japanese Patent J6 0075–293.Google Scholar
  109. Kyowa-Hakko, 1986, Process for producing coenzyme Qio, Japanese Patent J6 0256–390.Google Scholar
  110. Labarre J., Thuriaux, P., and Chauvat, F., 1978, Genetic analysis of amino acid transport in the facultatively heterotrophic cyanobacterium Synechocystis sp. strain 6803, J. Bacteriol. 169: 4668–4673.Google Scholar
  111. Ladha, J. K., Rowell, P., and Stewart W. D. P., 1978, Effects of 5-hydroxylysine on acetylene reduction and NH4+ assimilation in the cyanobacterium Anabaena cylindrica, Biochem. Biophys. Res. Commun. 83: 688–696.PubMedGoogle Scholar
  112. Lambert, G. R., and Smith, G. D., 1981, The hydrogen metabolism of cyanobacteria, Biol. Rev. 56: 589–660.Google Scholar
  113. Latorre, C., Lee, J. H., Spiller, H., and Shanmugam, K. T., 1986, Ammonium ion excreting cyanobacterial mutant as a source of nitrogen for the growth of rice: A feasibility study, Biotechnol. Lett. 8: 507–512.Google Scholar
  114. Laufer, L., Gutcho, S., Castro, T., and Grennen, R., 1964, Preparation of radioactive biochemicals by use of yeast, Biotechnol. Bioeng. 6: 127–146.Google Scholar
  115. Lea, P. J., Joy, K. W., Ramos, J. L., and Guerrero, M. G., 1984, The action of 2-amino4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants, Phytochemistry 23: 1–6.Google Scholar
  116. Lee, Y.-K., 1986, Enclosed bioreactors for the mass cultivation of phytosynthetic microorganisms: The future trend, Trends Biotechnol. 4: 186–189.Google Scholar
  117. Lenaz, G., 1985, Coenzyme Q: Biochemistry, Bioenergetics and Clinical Applications of Ubiquinone, Wiley, New York.Google Scholar
  118. Litchfield, J. H., 1983, Single cell proteins, Science 219: 740–746.PubMedGoogle Scholar
  119. Lorenz, M. G., and Krumbein, W. E., 1985, Uranium mobilization from low-grade ore by cyanobacteria, Appl. Microbiol. Biotechnol. 21: 374–377.Google Scholar
  120. Lumpkin, T. A., and Plucknett, D. L., 1982, Azolla as a Green Manure. Use and Management in Crop Production, Westview Press, Bowker Publishing Co., Epping.Google Scholar
  121. MacRae, I. C., 1985, Removal of pesticides in water by microbial cells adsorbed to magnetite, Water Res. 19: 825–830.Google Scholar
  122. MacRae, I. C., 1986, Removal of chlorinated hydrocarbons from water and wastewater by bacterial cells adsorbed to magnetite, Water Res. 20: 1149–1152.Google Scholar
  123. Mao, X.-Y., Miyake, J., and Kawamura, S., 1986, Screening photosynthetic bacteria for hydrogen production from organic acids, J. Ferment. Technol. 64: 245–249.Google Scholar
  124. Martinez, A., Llama, M. J., Alana, A., and Serra, J. L., 1989, Sustained photoproduction of ammonia from nitrate or nitrite by permeabilized cells of the cyanobacterium Phormidium laminosum, J. Photochem. Photobiol. B 3: 269–279.Google Scholar
  125. Mason, C. P., Edwards, K. R., Carlson, R. E., Pignatello, J., Gleason, F. K., and Wood, J. M., 1982, Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni, Science 215: 400–402.PubMedGoogle Scholar
  126. Matsunaga, T., and Izumida, H., 1984, Seawater-based methane production from blue-green algae biomass by marine bacteria coculture, Biotechnol. Bioeng. Symp. 14: 407–418.Google Scholar
  127. Matsunaga, T., Nakamura, N., Tsuzaki, N., and Takeda, H., 1988, Selective production of glutamate by an immobilized marine blue-green alga, Synechococcus sp., Appl. Microbiol. Biotechnol. 28: 373–376.Google Scholar
  128. Metting, B., and Pyne, J. W., 1986, Biologically active compounds from microalgae, Enzyme Microb. Technol. 8: 386–394.Google Scholar
  129. Mian, M. H., and Stewart, W. D. P., 1985, Fate of nitrogen applied as Azolla and blue-green-algae (cyanobacteria) in waterlogged rice soils—A 15N tracer study, Plant Soil 83: 363370.Google Scholar
  130. Mitsubishi Gas and Chemicals, 1986, Production of coenzyme Q10, Japanese Patent J6 1192294.Google Scholar
  131. Mitsui, A., Phlips, E. J., Kumazawa, S., Reddy, K. J., Ramachandran, S., Matsunaga, T., Haynes, L., and Ikemoto, H., 1983, Progress in research toward outdoor biological hydrogen production using solar energy, sea water, and marine photosynthetic microorganisms, Ann. N. Y. Acad. Sci. 413: 515–530.Google Scholar
  132. Miyake, J., Mao, X.-Y., and Kawamura, S., 1984, Photoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacterium and Clostridium butyricum, J. Ferment. Technol. 62: 531–535.Google Scholar
  133. Miyamoto, K., Ohata, S., Nawa, Y., Mori, Y., and Miura, Y., 1987, Hydrogen production by a mixed culture of a green alga, Chlamydomonas reinhardtii and a photosynthetic bacterium, Rhodospirillum rubrum, Agric. Biol. Chem. 51: 1319–1324.Google Scholar
  134. Moore, B. S., Chen, J. L., Patterson, M. L., and Moore, R. E., 1991, Paracyclophanes from blue-green algae, J. Am. Chem. Soc., 112: 4061–4063.Google Scholar
  135. Moore, R. E., 1982, Toxins, anticancer agents, and tumour promoters from marine prokaryotes, Pure Appl. Chem. 54: 1919–1934.Google Scholar
  136. Moore, R. E., and Patterson, G. M. L., 1986, Hapalindoles, European Patent Application EP 171. 283.Google Scholar
  137. Moore, R. E., Cheuk, C., and Patterson, G. M. L., 1984, Hapalindoles: New alkaloids from the blue-green alga Hapalosiphon fontinalis, J. Am. Chem. Soc. 106: 6456–6457.Google Scholar
  138. Moore, R. E., Patterson, G. M. L., Mynderse, J. S., Barchi, J. J., Norton, T. R., Furusawa, E., and Furusawa, S., 1986, Toxins from cyanophytes belonging to the Scytonemataceae, Pure Appl. Chem. 58: 263–271.Google Scholar
  139. Moore, R. E., Patterson, G. M. L., and Carmichael, W. W., 1988, New pharmaceuticals from cultured blue-green algae, Mem. Calif. Acad. Sci. 1988: 143–150.Google Scholar
  140. Mortensen, L. E., 1978, The role of dihydrogen and hydrogenase in nitrogen fixation, Biochimie 60: 219–223.Google Scholar
  141. Musgrave, S. C., Kerby, N. W., Codd, G. A., and Stewart, W. D. P., 1982, Sustained ammonia production by immobilized filaments of the nitrogen-fixing cyanobacterium Anabaena 27893, Biotechnol. Lett. 4: 647–652.Google Scholar
  142. Musgrave, S. C., Kerby, N. W., Codd, G. A., Rowell, P., and Stewart, W. D. P., 1983, Reactor types for the utilization of immobilized photosynthetic microorganisms, Process Biochem. (Suppl.) 1983: 184–190.Google Scholar
  143. Mynderse, J. S., Moore, R. E., Kashiwagi, M., and Norton, T. R., 1977, Antileukemia activity in the Oscillatoriaceae: Isolation of debromoaplysiatoxin from Lyngbya, Science 196: 538540.Google Scholar
  144. Nejedly, Z., Filip, J., and Grunberger, D., 1968, Preparation of 14Clabelled nucleic acid components of high specific activity from Chlorella pyrenoidosa, in: Proceedings of the Second International Conference on Methods of Preparing and Storing Labelled Compounds ( J. Sirchia, ed.), European Atomic Energy Commission, Brussels, pp. 527–536.Google Scholar
  145. Nikandrov, V. V., Shlyk, M. A., Gogotov, I. N., and Krasnovsky, A. A., 1988, Efficient photoinduced electron transfer from inorganic semiconductor TiO2 to bacterial hydrogenase, FEBS Lett. 234: 111–114.Google Scholar
  146. Niven, G. W., Kerby, N. W., Rowell, P., Foster, C. A., and Stewart, W. D. P., 1988a, The effect of detergents on amino acid liberation by the N2-fixing cyanobacterium Anabaena variabilis, J. Gen. Microbiol. 134: 689–695.Google Scholar
  147. Niven, G. W., Kerby, N. W., Rowell, P., and Stewart, W. D. P., 1988b, The regulation of aromatic amino acid biosynthesis in amino acid liberating mutant strains of Anabaena variabilis, Arch. Microbiol. 150: 272–277.Google Scholar
  148. Noparatnaraporn, N., Wongkornchawalit, W., Kantachote, D., and Nagai, S., 1986a, SCP production of Rhodopseudomonas sphaeroides on pineapple wastes, J. Ferment. Technol. 64: 137–143.Google Scholar
  149. Noparatnaraporn, N., Sasaki, K., Nishizawa, Y., and Nagai, S., 1986b, Stimulation of vitamin B12 formation in aerobically-grown Rhodopseudomonas gelatinosa under microaerobic condition, Biotechnol. Lett. 8: 491–496.Google Scholar
  150. Noparatnaraporn, N., Trakulnaleumsai, S., Silveira, R. G., Nishizawa, Y., and Nagai, S., 1987, SCP production by a mixed culture of Rhodocyclus gelatinosus and Rhodobacter sphaeroides from cassava waste, J. Ferment. Technol. 65: 11–16.Google Scholar
  151. Norton, R. S., and Wells, R. J., 1982, A series of chiral polybrominated biindoles from the marine blue-green alga Rivularia firma. Application of 13C NMR spin—lattice relaxation data and 13C–1H coupling constants to structure elucidation,/ Am. Chem. Soc. 104: 36283635.Google Scholar
  152. Ochiai, H., Shibata, H., Sawa, Y., and Katoh, T., 1980, “Living electrode” as a long-lived photoconverter for biophotolysis of water, Proc. Natl. Acad. Sci. USA 77:2442–2444.Google Scholar
  153. Ochiai, H., Shibata, H., Sawa, Y., Shoga, M., and Ohta, S., 1983, Properties of semiconductor electrodes coated with living films of cyanobacteria, Appl. Biochem. Biotechnol. 8: 289303.Google Scholar
  154. Odom, J. M., and Wall, J. D., 1983, Photoproduction of H2 from cellulose by an anaerobic bacterial coculture, Appi. Environ. Microbiol. 45: 1300–1305.Google Scholar
  155. Oswald, W. J., 1988a, Micro-algae and waste-water treatment, in: Micro-algal Biotechnology ( M. A. Borowitzka and L. J. Borowitzka, eds.), Cambridge University Press, Cambridge, pp. 305–328.Google Scholar
  156. Oswald, W. J., 1988b, Large-scale algal’ culture systems (engineering aspects), in: Micro-algal Biotechnology ( M. A. Brotowitzka and L. J. Borowitzka, eds.), Cambridge University Press, Cambridge, pp. 357–394.Google Scholar
  157. Palmer, C. M., 1969, A composite rating of algae tolerating organic loading,/ Phycol. 5: 78–82.Google Scholar
  158. Patterson, M. L., Baldwin, C. L., Bolis, C. M., Caplan, F. R., Karuso, H., Larsen, L. K., Levine, I. A., Moore, R. E., Nelson, C. S., Tschappat, D., and Tuang, G. D., 1991, Antineoplastic activity of cultured blue-green algae (Cyanophyta), J. Phycol. 27: 530–536.Google Scholar
  159. Peschek, G. A., 1979a, Aerobic hydrogenase activity in Anacystic nidulans the oxyhydrogen reaction, Biochim. Biophys. Acta 548: 203–215.PubMedGoogle Scholar
  160. Peschek, G. A., 1979b, Evidence for two functionally distinct hydrogenases in Anacystis nidulans, Arch. Microbiol. 123: 81–92.Google Scholar
  161. Pignatello, J. J., Porwoll, J., Carlson, R. E., Xavier, A., Gleason, F. K., and Wood, J. M., 1983, Structure of the antibiotic cyanobacterin, a chlorine-containing r-lactone from the freshwater cyanobacterium Scytonema hofmanni, J. Org. Chem. 48: 4035–4037.Google Scholar
  162. Planchard, A., Mignot, L., Jouenne, T., and Junter, G.-A., 1989, Photoproduction of molecular hydrogen by Rhodospirillum rubrum immobilized in composite agar layer/microporous membrane structures, Appl. Microbiol. Biotechnol. 31: 49–54.Google Scholar
  163. Polukhina, L. E., Sakhurieva, G. N., and Shestakov, S. V., 1982, Ethylenediamine-resistant Anabaena variabilis mutants with derepressed nitrogen-fixing system, Microbiology 51: 9095.Google Scholar
  164. Ponnamperuma, F. N., 1976, Physiochemical properties of submerged soils in relation to fertility, in: The Fertility of Paddy Soils and Fertilizer Applications. Compiled by Food and Fertilizer Technology Centre for the Asian and Pacific Regions, Taiwan, pp. 1–27.Google Scholar
  165. Ramos, J. L., Guerrero, M. G., and Losada, M., 1982a, Photoproduction of ammonia from nitrate by Anacystis nidulans cells, Biochim. Biophys. Acta 679: 323–330.Google Scholar
  166. Ramos, J. L., Guerrero, M. G., and Losada, M., 1982b, Sustained photoproduction of ammonia from nitrate by Anacystis nidulans, Appl. Environ, Microbiol. 44: 1020–1025Google Scholar
  167. Ramos, J. L., Guerrero, M. G., and Losada, M., 1984, Sustained photoproduction of ammonia from dinitrogen and water by the nitrogen-fixing cyanobacterium Anabaena sp. strain ATCC 33047, Biotechnol. Bioeng. 24: 566–571.Google Scholar
  168. Rao, K. K., and Hall, D. 0., 1988, Hydrogenases: Isolation and assay, Meth. Enzymol. 167: 501509.Google Scholar
  169. Rawson, D. M., Willmer, A. J., and Cardosi, M. F., 1987, The development of whole cell biosensors for on-line screening of herbicide pollution of surface waters, Toxicity Assessment 2: 325–340.Google Scholar
  170. Rawson, D. M., Willmer, A. J., and Turner, A. P. F., 1989, Whole-cell biosensors for environmental monitoring, Biosensors 4: 299–311.PubMedGoogle Scholar
  171. Reed, R. H., and Gadd, G. M., 1990, Metal tolerance in eukaryotic and prokaryotic algae, in: Heavy Metal Tolerance in Plants—Evolutionary Aspects ( J. Shaw, ed.), CRC Press, Boca Raton, Florida, pp. 105–118.Google Scholar
  172. Reed, R. H., Warr, S. R. C., Kerby, N. W, and Stewart, W. D. P., 1986, Osmotic shock-induced release of low molecular weight metabolites from free-living and immobilised cyanobacteria, Enzyme Microb. Technol. 8: 101–104.Google Scholar
  173. Reglinski, A., Rowell, P., Kerby, N. W., and Stewart, W. D. P., 1989, Characterization of methylammonium/ammonium transport in mutant strains of Anabaena variabilis resistant to ammonium analogues, J. Gen. Microbiol. 135: 1441–1451.Google Scholar
  174. Riccardi, G., Sora, S., and Ciferri, 0., 198la, Production of amino acids by analog-resistant mutants of the cyanobacterium Spirulina platensis, J. Bacteriol. 147: 1002–1007.Google Scholar
  175. Riccardi, G., Sanangelatoni, D., Carboera, D., Savi, A., and Ciferri, O., 1981b, Characterization of mutants of Spirulina platensis resistant to amino acid analogues, FEMS Microbiol. Lett. 12: 333–336.Google Scholar
  176. Richmond, A. (ed.), 1986, CRC Handbook of Microalgal Mass Culture, CRC Press, Boca Raton, Florida.Google Scholar
  177. Rivera-Ortiz, J. M., and Burris, R. H., 1975, Interactions among substrates and inhibitors of nitrogenase, J. Bacteriol. 123: 537–545.PubMedGoogle Scholar
  178. Roberts, R. B., Cowie, D. B., Abelson, P. H., Bolton, E. T., and Britten, R. J., 1955, Studies of Biosynthesis in Escherichia coli, Carnegie Institute of Washington, Washington, D.C.Google Scholar
  179. Roberts, R. J., 1987, Restriction and modification enzymes and their isoschizomers, Nucleic Acid Res. 15: 189–218.Google Scholar
  180. Rodgers, G. A., Bergman, B., Henriksson, E., and Urdis, M., 1979, Utilization of blue green algae as biofertilizers, Plant Soil 52: 99–107.Google Scholar
  181. Roger, P. A., and Kulasooriya, S. A., 1980, Blue-Green Algae and Rice, IRRI, Manila.Google Scholar
  182. Rother, J. A., Aziz, A., Karim, N. H., and Whitton, B. A., 1988, Ecology of deepwater ricefields in Bangladesh 4. Nitrogen fixation by blue-green algal communities, Hydrobiologia 169: 43–56.Google Scholar
  183. Rowell, P., and Kerby, N. W., 1991, Cyanobacteria and their symbionts in: Biology and Biochemistry of Nitrogen Fixation (M. J. Dilworth and A. R. Glenn, eds.), Elsevier, New York, pp. 373–407.Google Scholar
  184. Rowell, P., Rai, A. N., and Stewart, W. D. P., 1985, Studies on the nitrogen metabolism of the lichens Peltigera aphthosa and Peltigera canina, in: Lichen Physiology and Cell Biology ( D. H. Brown, ed.), Plenum Press, New York, pp. 145–160.Google Scholar
  185. Roychoudhury, P., Krishnamurti, G. S. R., and Venkataraman, G. S., 1980, Effect of algal inoculation on soil aggregation in rice soils, Phykos 19: 224–227.Google Scholar
  186. Sakhurieva, G. N., Polukhina, L. E., and Shestakov, S. V., 1982, Glutamine synthetase in Anabaena variabilis mutants with derepressed nitrogenase, Microbiology 51: 308–312.Google Scholar
  187. Sasaki, K., Noparatnaraporn, N., Hayashi, M., Nishizawa, Y., and Nagai, S., 1981, Single-cell protein production by treatment of soybean wastes with Rhodopseudomonas gelatinosa, J. Ferment. Technol. 59: 471–477.Google Scholar
  188. Sasaki, K., Ikeda, S., Nishizawa, Y., and Hayashi, M., 1987, Production of 5-aminolevulinic acid by photosynthetic bacteria, J. Ferment. Technol. 65: 511–515.Google Scholar
  189. Sasaki, K., Tanaka, T., Nishizawa, Y., and Hayashi, M., 1990, Production of a herbicide, 5aminolevulinic acid, by Rhodobacter spaeraides using the effluent of swine waste from an anaerobic digester, Appl. Microbiol. Biotechnol. 32: 727–731.Google Scholar
  190. Sawa, Y., Kanayama, K., and Ochiai, H., 1982, Photosynthetic regeneration of ATP using a strain of thermophilic blue-green algae, Biotechnol. Bioeng. 24: 305–315.PubMedGoogle Scholar
  191. Sawa, Y., Shindo, H., Nishimura, S., and Ochiai, H., 1986, Photosynthetic glutathione production using intact cyanobacterial cells, Agric. Biol. Chem. 50: 1361–1363.Google Scholar
  192. Saxena, P. N., Ahmad, M. R., Shyam, R., and Amla, D. V., 1983, Cultivation of Spirulina in sewage for poultry feed, Experientia 39: 1077–1083.Google Scholar
  193. Schwartz, R. E., Hirsch, C. F., Springer, J. P., Pettibone, D. J., and Zink, D. L., 1987, Unusual cyclopropane-containing hapalindolinones from a cultured cyanobacterium, J. Org. Chem. 52: 3704–3706.Google Scholar
  194. Seiko-Epson, 1986, Cytostatic drug containing polysaccharides, Japanese Patent J6 1158–926.Google Scholar
  195. Shi, D.J., Brouers, M., Hall, D. O., and Robins, R. J., 1987, The effects of immobilization on the biochemical, physiological and morphological features of Anabaena azollae, Planta 172: 298–308.Google Scholar
  196. Shinohara, K., Okura, Y., Koyano, T., Murakami, H., Kim, E.-H., and Omura, H., 1986, Growth-promoting effects of an extract of a thermophillic blue-green alga, Synechococcus elongatus var. on human cell lines, Agric. Biol. Chem. 50: 2225–2230.Google Scholar
  197. Shinohara, K., Okura, Y., Koyano, T., Murakami, H., and Omura, H., 1988, Algal phycocyanins promote growth of human cells in culture, In Vitro Cell. Dev. Biol. 24: 1057–1060.PubMedGoogle Scholar
  198. Singh, A. L., and Singh P. K., 1986, Comparative effects of Azolla and blue-green algae in combination with chemical N fertilizer on rice crop, Proc. Indian Acad. Sci. Plant Sci. 96: 147–152.Google Scholar
  199. Singh, A. L., and Singh, P. K., 1987, Comparative study on Azolla and blue-green algae dual culture with rice, Isr. J. Bot. 36: 53–61.Google Scholar
  200. Singh, R. N., 1961, The Role of Blue-Green Algae in Nitrogen Economy of Indian Agriculture, Indian Council of Agricultural Research, New Delhi.Google Scholar
  201. Spiller, H., Latorre, C., Hassan, M. E., and Shanmugam, K. T., 1986, Isolation and characterisation of nitrogenase-derepressed mutant strains of the cyanobacterium Anabaena variabilis, J. Bacteriol. 132: 596–603.Google Scholar
  202. Stadler, T., Mollion, J., Verdus, M.-C., Karamanos, Y., Morvan, H., and Christiaen, D. (eds.), 1988, Algal Biotechnology, Elsevier, London.Google Scholar
  203. Stanier, R. Y., Pfennig, N., and Trüper, H. G., 1981, Introduction to the phototrophic prokaryotes, in: The Prokaryotes, Vol. 1 ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balowa, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. 197–211.Google Scholar
  204. Stewart, J. B., Bornemann, V., Chen, J. L., Moore, R. E., Caplan, F. R., Karuso, H., Larsen, L. K., and Patterson, G. M. L., 1988, Cytotoxic, fungicidal nucleosides from blue green algae belonging to the Scytonemataceae, J. Antibiot. 41: 1048–1056.PubMedGoogle Scholar
  205. Stewart, W. D. P., 1963, Liberation of extracellular nitrogen by two nitrogen-fixing blue-green algae, Nature 200: 1020–1021.PubMedGoogle Scholar
  206. Stewart, W. D. P., 1980a, Some aspects of structure and function in N2-fixing cyanobacteria, Annu. Rev. Microbiol. 34: 497–536.PubMedGoogle Scholar
  207. Stewart, W. D. P., 1980b, Systems involving blue-green algae (cyanobacteria), in: Methods for Evaluating Biological Nitrogen Fixation ( F. J. Bergersen, ed.), Wiley, London, pp. 583–635.Google Scholar
  208. Stewart, W. D. P., and Rowell, P., 1975, Effects of L-methionine-n,L-sulphoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production in Anabaena cylindrica, Biochem. Biophys. Res. Commun. 65: 846–857.PubMedGoogle Scholar
  209. Stewart, W. D. P., Rowell, P., Ladha, J. K., and Sampaio, M. J. A. M., 1979, Blue-green algae (cyanobacteria)—Some aspects related to their role as sources of fixed nitrogen in paddy soils, in: Proceedings of Nitrogen and Rice Symposium, IRRI, Manila, pp. 263–283.Google Scholar
  210. Stewart, W. D. P., Rowell, P., and Rai, A. N., 1983, Cyanobacteria–eukaryotic plant symbioses, Ann. Microbiol. (Inst. Pasteur) 134B: 205–228.Google Scholar
  211. Strayer, R. F., Baska, D. F., and Knott, W. M., 1985, Biological hydrogen production as a potential renewable fuel source for the Shuttle Transportation System, Abstr. Ann. Meet. Am. Soc. Microbiol. 1985: 792.Google Scholar
  212. Subramanian, G., and Shanmugasundaram, S., 1986, Uninduced ammonia release by the nitrogen-fixing cyanobacterium Anabaena, FEMS Microbiol. Lett. 37: 151–154.Google Scholar
  213. Takakuwa, S., Odom, J. M., and Wall, J. D., 1983, Hydrogen uptake deficient mutants of Rhodopseudomonas capsulata, Arch. Microbiol. 136: 20–25.Google Scholar
  214. Tanaka, K., Tamamushi, R., and Ogawa, T., 1985, Bioelectrochemical fuel-cells operated by the cyanobacterium Anabaena variabilis, J. Chem. Technol. Biotechnol. 35B: 191–197.Google Scholar
  215. Tanaka, K., Kashiwagi, N., and Ogawa, T., 1988, Effects of light on the electrical output of bioelectrochemical fuel cells containing Anabaena variabilis M-2: mechanisms of the post-illumination burst, J. Chem. Technol. Biotechnol. 42: 235–240.Google Scholar
  216. Tandeau de Marsac, N., de la Torre, F., and Szulmajster, J., 1987, Expression of the larvicidal gene of Bacillus sphaericus 1593M in the cyanobacterium Anacystic nidulans R2, Mol. Gen. Genet. 209: 396–398.Google Scholar
  217. Tapie, P., and Bernard, A., 1988, Microalgae production: Technical and economic evaluations, Biotechnol. Bioeng. 32: 873–885.PubMedGoogle Scholar
  218. Terry, K. L., and Raymond, L. P., 1985, System design for the autotrophic production of microalgae, Enzyme Microb. Technol. 7: 474–487.Google Scholar
  219. Thomas, S. P., Zaritsky, A., and Boussiba, S., 1990, Ammonium excretion by an L-methionineDL-sulfoximine-resistant mutant of the rice field cyanobacterium Anabaena siamensis, Appl. Environ. Microbiol. 56: 3499–3504.PubMedGoogle Scholar
  220. Tovey, K. C., Spiller, G. H., Oldham, K. G., Lucas, N., and Carr, N. G., 1974, A new method for the preparation of uniformly 14C-labelled compounds by using Anacystis nidulans, Biochem. J. 142: 47–56.PubMedGoogle Scholar
  221. Tsur, Y., and Hochman, E., 1986, Economic aspects of the management of algal production, in: CRC Handbook of Microalgal Mass Culture ( A. Richmond, ed.), CRC Press, Boca Raton, Florida, pp. 473–483.Google Scholar
  222. United Kingdom Atomic Energy Authority, 1973, Improvements in or relating to 14C-labelled compounds, UK Patent GB 1342098.Google Scholar
  223. University of Dundee, 1989, Production of organic compounds, International Patent Application PCT/GB88/00510.Google Scholar
  224. Van der Oost, J., Kanneworff, W. A., Krab, K., and Kraayenhof, R., 1987, Hydrogen metabolism of three unicellular nitrogen-fixing cyanobacteria, FEMS Microbiol. Lett. 48: 41–45.Google Scholar
  225. Vazquez, E., Buzaleh, A. M., Wider, E., and Batlle, A. M. C., 1988, Soluble and immobilized Rhodopseudomonas palustris rhodanese: Optimal conditions, Biotechnol. Appl. Biochem. 10: 131–136.Google Scholar
  226. Venkataraman, G. S., and Neelakantan, S., 1967, Effect of cellular constituents of the nitrogen-fixing blue-green alga Cylindrospermum muscicola on the growth of rice seedlings, J. Gen. Microbiol. 13: 53–58.Google Scholar
  227. Venkataraman, L. V., 1986, Blue-green algae as biofertilizer, in: CRC Handbook of Microalgal Mass Culture ( A. Richmond, ed.), CRC Press, Boca Raton, Florida, pp. 455–471.Google Scholar
  228. Vincenzini, M., De Philippis, R., Ena, A., and Florenzano, G., 1986, Ammonia photoproduction by Cyanospira rippkae cells “entrapped” in dialysis tube, Experientia 42: 1040–1043.Google Scholar
  229. Von Felten, P., Zürrer, H., and Bachofen, R., 1985, Production of molecular hydrogen with immobilised cells of Rhodospirillum rubrum, App. Microbiol. Biotechnol. 23: 15–20.Google Scholar
  230. Vymazal, J., 1987, Toxicity and accumulation of cadmium with respect to algae and cyanobacteria: A review, Toxicity Assessment 2: 387–415.Google Scholar
  231. Wall, J. D., and Gest, H., 1979, Derepression of nitrogenase activity in glutamine auxotrophs of Rhodopseudomonas capsulata, J. Bacteriol. 137: 1459–1463.Google Scholar
  232. Wall, J. D., Weaver, P. F., and Gest, H., 1975, Genetic transfer of nitrogenase-hydrogenase activity in Rhodopseudomonas capsulata, Nature 258: 630–631.Google Scholar
  233. Watanabe, I., and Roger, P. A., 1984, Nitrogen fixation in wetland rice, in: Current Developments in Biological Nitrogen Fixation ( N. S. Subba Rao, ed.), Edward Arnold, London, pp. 237–276.Google Scholar
  234. Watanabe, I., Ventura, W., Cholitkul, W., Roger, P. A., and Kulasooriya, S. A., 1982, Potential of biological nitrogen fixation in deep water rice, in: Proceedings of the 1981 International Deepwater Rice Workshop, IRRI, Manila, pp. 191–200.Google Scholar
  235. Weisshaar, H., and Böger, P., 1983, Nitrogenase activity of the non-heterocystous cyanobacterium Phormidium foveolarum, Arch. Microbiol. 136: 270–274.Google Scholar
  236. Whitton, B. A., and Roger, P. A., 1989, Use of blue-green algae and Azolla in rice culture, in: Microbial Inoculation of Crop Plants ( R. Campbell and R. M. Macdonald, eds.), IRL Press, Oxford, pp. 89–100.Google Scholar
  237. Willison, J. C., Jouanneau, Y., Colbeau, A., and Vignais, P. M., 1983, H2 metabolism in photosynthetic bacteria and relationship to N2 fixation, Ann. Microbiol. (Inst. Pasteur) 134B: 115–135.Google Scholar
  238. Wyman, M., Gregory, R. P. F., and Carr, N. G., 1985, Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2, Science 230: 818–820.PubMedGoogle Scholar
  239. Xiankong, Z., Haskell, J. B., Tabita, R., and Van Baalen, C., 1983, Aerobic hydrogen production by the heterocystous cyanobacteria Anabaena spp. strains CA and 1F, J. Bacterial. 156: 1118–1122.Google Scholar
  240. Yamada, K., Kinoshita, S., Tsunoda, T., and Aida, K., 1972, The Microbiol Production of Amino Acids, Halstead Press, New York.Google Scholar
  241. Zimmerman, W. J., and Boussiba, S., 1987, Ammonia assimilation and excretion in an asymbiotic strain of Anabaena azollae from Azolla filiculoides Lam, J. Plant Physiol. 127: 443–450.Google Scholar
  242. Zürrer, H., 1982, Hydrogen production by photosynthetic bacteria, Experientia 38: 64–67.Google Scholar
  243. Zürrer, H., and Bachofen, R., 1982, Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture. Biomass 2: 165–174.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Nigel W. Kerby
    • 1
  • Peter Rowell
    • 1
  1. 1.Agricultural and Food Research Council Research Group on Cyanobacteria, and Department of Biological SciencesUniversity of DundeeDundeeUK

Personalised recommendations