Skip to main content

Physiology of the Photosynthetic Prokaryotes

  • Chapter
Photosynthetic Prokaryotes

Part of the book series: Biotechnology Handbooks ((BTHA,volume 6))

Abstract

Living organisms grow by synthesizing in an ordered fashion the complex macromolecules of their own cells from simpler molecules. In general, the energy requirements for this can be met either by degrading part of the nutritional substrate for respiration (heterotrophic organisms) or by converting light energy into chemical energy as in the phototrophic organisms. The proportions of these two types of organisms on the earth are difficult to estimate, but their activities balance each other. In the long term both types are dependent on each other for major nutrients—heterotrophs must have the oxygen and organic molecules produced by photosynthesis; the phototrophs depend on the heterotrophs for keeping the oxygen content of the atmosphere at a tolerable level and for carbon dioxide, produced by respiration. The phototrophs also depend on sunlight, which is the driving force for the whole system. The two modes of life, heterotrophy and photototrophy, must have existed side by side on the surface of the earth for thousands of millions of years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa, K., and Miyachi, S., 1986, Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria, FEMS Microbiol. Rev. 39: 215–233.

    Article  CAS  Google Scholar 

  • Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., and Rees, D. C., 1987, Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits, Proc. Natl. Acad. Sci. USA 84: 6162–6166.

    Article  PubMed  CAS  Google Scholar 

  • Allen, M. M., 1984, Cyanobacterial cell inclusions, Annu. Rev. Microbiol. 38: 1–25.

    Article  CAS  Google Scholar 

  • Amesz, J., 1990, Antenna systems of green bacteria and heliobacteria, in: Current Research in Photosynthesis, Volume II ( M. Baltscheffsky, ed.), Kluwer, Dordrecht, pp. 25–31.

    Google Scholar 

  • Andreasson, L. E., and Vännghrd, T., 1988, Nytt Ijus over fotosyntesen, Kem. Tidskr. 1988 (12): 41–46.

    Google Scholar 

  • Avissar, Y. J., Ormerod, J. G., and Beale, S. I., 1989, Distribution of 8-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups, Arch. Microbiol. 151: 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Blankenship, R. E., 1985, Electron transport in green photosynthetic bacteria, Photosynth. Res. 6: 317–333.

    Article  CAS  Google Scholar 

  • Brandt, H., Knee, E. J., Fuller, R. C., Gross, R. A., and Lenz, R. W., 1989, Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (13-hydroxy-alkanoates): Potential sources for biodegardable polyesters, Int. J. Biol. Macromol. 11: 49–55.

    Article  Google Scholar 

  • Buchanan, B. B., and Evans, M. C. W., 1969, Photoreduction of ferredoxin and its use in NAD(P)+ reduction by a subcellular preparation from the photosynthetic bacterium Chlorobium thiosulfatophilum, Biochim. Biophys. Acta 180: 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Burger-Wiersma, T., Veenhuis, M., Korthals, H. J., Van De Wiel, C. C. M., and Mur, L. R., 1986, A new prokaryote containing chlorophylls a and b, Nature 320: 262–264.

    Article  CAS  Google Scholar 

  • Carr, N. G., 1988, Nitrogen reserves and dynamic reservoirs in cyanobacteria, in: Biochemistry of the Algae and Cyanobacteria (L. J. Rogers and J. R. Gallon, eds.), Oxford University Press, Oxford, pp. 13–21.

    Google Scholar 

  • Ciferri, O., 1983, Spirulina, the edible microorganism, Microbiol. Rev. 47: 551–578.

    PubMed  CAS  Google Scholar 

  • Cohen-Bazire, G., Sistrom, W. R., and Stanier, R. Y., 1957, Kinetic studies of pigment synthesis by non-sulfur purple bacteria, J. Cell. Comp. Physiol. 49: 25–68.

    Article  CAS  Google Scholar 

  • Cork, D. J., Garunas, R., and Sajjad, A., 1983, Chlorobium limicola forma thiosulfatophilum: Biocatalyst in the production of sulfur and organic carbon from a gas stream containing H2S and CO2, J. Bacterial. 45: 913–918.

    CAS  Google Scholar 

  • Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H., 1985, Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A resolution, Nature 318: 618–624.

    Article  PubMed  CAS  Google Scholar 

  • De Wit, R., and Van Gemerden, H., 1990, Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimes in the light, FEMS Microbiol. Ecol. 73: 69–76.

    Article  Google Scholar 

  • Dutton, P. L., and Evans, W. C., 1978, Metabolism of aromatic compounds by Rhodospirillaceae, in: The Photosynthetic Bacteria ( R. K. Clayton and W. R. Sistrom, eds.), Plenum Press, New York, pp. 719–726.

    Google Scholar 

  • Eimhjellen, K. E., Aasmundrud, O., and Jensen, A., 1963, A new bacteriochlorophyll, Biochem. Biophys. Res. Commun. 10: 232–236.

    Article  Google Scholar 

  • Eimhjellen, K. E., Steensland, H., and Trätteberg, J., 1967, A Thiococcus sp. nov. gen., its pigments and internal membrane system, Arch. Mikrobiol. 59: 82–92.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M. C. W., Buchanan, B. B., and Arnon, D. I., 1966, A new ferredoxin dependent reduction cycle in a photosynthetic bacterium, Proc. Natl. Acad. Sci. USA 55: 928–934.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, R. C., Sprague, S. G., Gest, H., and Blankenship, R. E., 1985, Unique photosynthetic reaction center from Heliobacterium chlorum, FEBS Lett. 182: 345–349.

    Article  CAS  Google Scholar 

  • Gantt, E., 1986, Phycobilisomes, in: Photosynthesis III ( L. A. Staehelin and C. J. Arntzen, eds.), Springer, Berlin, pp. 260–268.

    Google Scholar 

  • Gest, H., and Favinger, J. L., 1983, Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll, Arch. Microbiol. 136: 11–16.

    CAS  Google Scholar 

  • Gest, H., Ormerod, J. G., and Ormerod, K. S., 1962, Photometabolism of Rhodospirillum rubrum: Light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle, Arch. Biochem. Biophys. 97: 21–33.

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk, G., 1986, Bacterial Metabolism, 2nd ed., Springer, New York.

    Book  Google Scholar 

  • Hansen, T. A., 1983, Electron donor metabolism in phototrophic bacteria, in: The Phototrophic Bacteria ( J. G. Ormerod, ed.), Blackwell, Oxford, pp. 76–99.

    Google Scholar 

  • Harder, W., Kuenen, J. G., and Matin, A., 1977, A review, microbial selection in continuous culture, J. Appl. Bacterial. 43: 1–24.

    Article  CAS  Google Scholar 

  • Heda, G. D., and Madigan, M. T., 1988, Nitrogen metabolism and N2 fixation in phototrophic green bacteria, in: Green Photosynthetic Bacteria ( J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. TrĂĽper, eds.), Plenum Press, New York, pp. 175–187.

    Chapter  Google Scholar 

  • Holo, H., 1989, Chloroflexus auranctiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate, Arch. Microbiol. 151: 252–256.

    Article  CAS  Google Scholar 

  • Holo, H., and Sirevâg, R., 1986, Autotrophic growth and CO2 fixation of Chloroflexus auranctiacus, Arch. Microbiol. 145: 173–180.

    Article  CAS  Google Scholar 

  • Hurt, E. C., and Hauska, G., 1984, Purification of membrane-bound cytochromes and a photoactive P840 protein complex of the green sulfur bacterium Chlorobium f. thiosulfatophilum, FEBS Lett. 168: 149–154.

    Article  CAS  Google Scholar 

  • Kallas, T., Rippka, R., Coursin, T., Rebiere, M. C., Tandeau de Marsac, N., and Cohen-Bazire, G., 1983, Aerobic nitrogen fixation by non-heterocystous cyanobacteria, in: Photosynthetic Prokaryotes ( C. G. Papageorgiou and L. Packer, eds.), Elsevier, Amsterdam, pp. 281–302.

    Google Scholar 

  • Knaff, D. B., 1978, Reducing potentials and the pathway of NAD+ reduction, in: The Photosynthetic Bacteria ( R. K. Clayton and W. R. Sistrom, Eds.), Plenum Press, New York, pp. 629–640.

    Google Scholar 

  • Lewin, R. A., 1976, Prochlorophyta as a proposed new division of algae, Nature 261: 697–698.

    Article  PubMed  CAS  Google Scholar 

  • Löken, O., and Sirevâg, R., 1979, Evidence for the presence of the glyoxylate cycle in Chloroflexus, Arch. Microbiol. 132: 276–279.

    Article  Google Scholar 

  • Madigan, M. T., and Brock, T. D., 1977, CO2 fixation in photosynthetically grown Chloroflexus aurantiacus, FEMS Microbiol. Lett. 1: 301–304.

    Article  CAS  Google Scholar 

  • Madigan, M. T., and Gest, H., 1978, Growth of a photosynthetic bacterium in darkness, supported by oxidant-dependent sugar fermentation, Arch. Microbiol. 117: 119–122.

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux, P. M., Gallon, J. R., and Chaplin, A. E., 1981, Acetylene reduction in cyanobac- teria grown under alternating light-dark cycles, FEMS Microbiol. Lett. 10: 245–247.

    Article  Google Scholar 

  • Neuer, G., Papen, H., and Bothe, H., 1983, Heterocyst biochemistry and differentiation, in: Photosynthetic Prokaryotes ( G. C. Papageorgiou and L. Packer, eds.), Elsevier, Amsterdam, pp. 219–242.

    Google Scholar 

  • Oelze, J.,. 1988, Regulation of tetrapyrrol synthesis by light in chemostat cultures of Rhodobacter sphaeroides, J. Bacteriol. 170: 4652–4657.

    PubMed  CAS  Google Scholar 

  • Oelze, J., and Fuller, R. C., 1987, Growth and control of development of the photosynthetic apparatus in Chloroflexus auranctiacus, Arch. Microbiol. 148: 132–136.

    Article  CAS  Google Scholar 

  • Ormerod, J. G., 1983, The carbon cycle in aquatic ecosystems, in: Microbes in Their Natural Environments ( J. H. Slater, R. Whittenbury, and J. M. Wimpenny, eds.), Cambridge University Press, Cambridge, pp. 463–482.

    Google Scholar 

  • Ormerod, J. G., 1988, Natural genetic transformation in Chlorobium, in: Green Photosynthetic Bacteria ( J. M. Olsen, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. TrĂĽper, eds.), Plenum Press, New York, pp. 315–319.

    Chapter  Google Scholar 

  • Ormerod, J. G., and Sirevâg, R., 1983, Essential aspects of carbon metabolism, in: The Phototrophic Bacteria ( J. G. Ormerod, ed.), Blackwell, Oxford, pp. 100–119.

    Google Scholar 

  • Ormerod, J. G., Ormerod, K. S., and Gest, H., 1961, Light dependent utilisation of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria: Relationships with nitrogen metabolism, Arch. Biochem. Biophys. 94: 449–463.

    Article  PubMed  CAS  Google Scholar 

  • Ormerod, J. G., Nesbakken, T., and Torgersen, Y., 1990, Phototrophic bacteria that form heat resistant endospores, in: Current Research in Photosynthesis, Volume IV ( M. Baltscheffsky, ed.), Kluwer, Dordrecht, pp. 935–938.

    Google Scholar 

  • Ovchinnikov, Y. A., Abdulev, A. S., Zolotarev, A. S., Shmukler, B. E., Zargarov, A. A., Kutuzov, M. A., Telezhinskaya, I. N., and Levina, N. B., 1988a, Photosynthetic reaction centre of Chloroflexus auranctiacus I. Primary structure of L-subunit, FEBS Lett. 231: 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Ovchinnikov, Y. A., Abdulev, A. S., Schmuckler, B. E., Zargarov, A. A., Kutuzov, M. A., Telezhinskaya, I. N., Levina, N. B., and Zolotarev, A. S., 1988b, Photosynthetic reaction centre of Chloroflexus auranctiacus. Primary structure of M-subunit, FEBS Lett. 232: 364–368.

    Article  PubMed  CAS  Google Scholar 

  • Packham, N. K., and Barber, J., 1987, Structural and functional comparison of anoxygenic and oxygenic organisms, in: The Light Reactions ( J. Barber, ed.), Elsevier, Amsterdam, pp. 1–30.

    Google Scholar 

  • Padan, E., and Cohen, Y., 1982, Anoxygenic photosynthesis, in: The Biology of Cyanobacteria ( N. G. Carr and B. A. Whitton, eds.), Blackwell, Oxford, pp. 215–235.

    Google Scholar 

  • Pelroy, R. A., Rippka, R., and Stanier, R. Y., 1972, The metabolism of glucose by unicellular blue-green algae, Arch. Mikrobiol. 87: 303–322.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N., 1961, Eine vollsyntetische Nährlösung zur…, Naturwissenschaften 48: 136

    Article  Google Scholar 

  • Pfennig, N., and Biebl, H., 1976, Desufuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur reducing, acetate-oxidising bacterium, Arch. Microbiol. 110: 3–12.

    CAS  Google Scholar 

  • Pfennig, N., and Lippert, D. T., 1966, Uber das vitamin B12-bedurfnis phototropher schwefelbakterien, Arch. Mikrobiol. 55: 245–246.

    Article  CAS  Google Scholar 

  • Pierson, B. K., and Castenholz, R. W., 1974, Studies of pigments and growth in Chloroflexus auranctiacus, a phototrophic filamentous bacterium, Arch. Microbiol. 100: 283–305.

    Article  CAS  Google Scholar 

  • Pierson, B. K., and Thornber, J. P., 1983, Isolation and spectral characteristics of photochemical reaction centers from the thermophilic green bacterium Chloroflexus auranctiacus strain J-10-f1, Proc. Natl. Acad. Sci. USA 80: 80–84.

    Article  PubMed  CAS  Google Scholar 

  • Reed, D. W., and Clayton, R. K., 1968, Isolation of a reaction center fraction from Rhodopseudomonas sphaeroides, Biochem. Biophys. Res. Commun. 30: 471–475.

    Article  PubMed  CAS  Google Scholar 

  • Rieble, S., Ormerod, J. G., and Beale, S. I., 1989, Transformation of glutamate to S-aminolevulinic acid by soluble extracts of Chlorobium vibrioforme, J. Bacteriol. 171: 3782–3787.

    PubMed  CAS  Google Scholar 

  • Rippka, R., Waterbury, J. B., and Stanier, R. Y., 1981, Isolation and purification of cyanobacteria: Some principles, in: The Prokaryotes, Volume I ( M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), Springer, Berlin, pp. 212–220.

    Google Scholar 

  • Scheller, H. V., and Moller, B. L., 1990, Photosystem I polypeptides, Physiol Plant. 78: 484494.

    Google Scholar 

  • Sirevsg, R., and Castenholz, R. C., 1979, Aspects of carbon metabolism in Chloroflexus, Arch. Microbiol. 120: 151–153.

    Article  Google Scholar 

  • Sirevâg, R., and Ormerod, J. G., 1970, Carbon dioxide fixation in green sulphur bacteria, Biochem. J. 120: 399–408.

    PubMed  Google Scholar 

  • Sistrom, W. R., Griffiths, M., and Stanier, R. Y., 1956, The biology of a photosynthetic bacterium which lacks colored carotenoids, J. Cell. Comp. Physiol. 48: 473–515.

    Article  CAS  Google Scholar 

  • Staehelin, L. A., Golecki, R., Fuller, R. C., and Drews, G., 1978, Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus auranctiacus, Arch. Microbiol. 119: 269–277.

    Article  Google Scholar 

  • Stanier, R. Y., Kunisawa, R., Mandel, M., and Cohen-Bazire, G., 1971, Purification and properties of unicellular blue green algae (order Chroococcales), Bacteriol. Revs. 35: 171–205.

    CAS  Google Scholar 

  • Takabe, T., and Akazawa, T., 1977, A comparative study on the effect of 02 on photosynthetic carbon metabolism by Chlorobium thiosulfatophilum and Chromatium vinosum, Plant Cell Physiol. 18: 753–765.

    CAS  Google Scholar 

  • Torgersen, Y. A., 1989, Characterization of an obligately phototrophic bacterium that contains bacteriochlorophyll g, Cand. Scient. thesis, Oslo University, Oslo, Norway [in Norwegian].

    Google Scholar 

  • Uffen, R. L., 1978, Fermentative metabolism and growth of photosynthetic bacteria, in: The Photosynthetic Bacteria ( R. K. Clayton and R. W. Sistrom, eds.), Plenum Press, New York, pp. 857–872.

    Google Scholar 

  • Van Gemerden, H., 1968, Utilization of reducing power in growing cultures of Chromatium, Arch. Mikrobiol. 64: 111–117.

    Article  PubMed  Google Scholar 

  • Woese, C. R., 1987, Bacterial evolution, Microbiol. Rev. 51: 221–271.

    PubMed  CAS  Google Scholar 

  • Wyman, M., Gregory, R. P. F., and Carr, N. G., 1985, Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2, Science 230: 818–820.

    Article  PubMed  CAS  Google Scholar 

  • Yen, H.-C., and Marrs, B. L., 1976, Growth of Rhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulfoxide, Arch. Biochem. Biophys. 181: 411–418.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ormerod, J.G. (1992). Physiology of the Photosynthetic Prokaryotes. In: Mann, N.H., Carr, N.G. (eds) Photosynthetic Prokaryotes. Biotechnology Handbooks, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1332-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1332-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1334-3

  • Online ISBN: 978-1-4757-1332-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics