Taxonomy, Phylogeny, and General Ecology of Anoxygenic Phototrophic Bacteria

  • Johannes F. Imhoff
Part of the Biotechnology Handbooks book series (BTHA, volume 6)


Phototrophic bacteria, including oxygenic and anoxygenic phototrophic bacteria, can transform light energy into metabolically useful chemical energy by chlorophyll- or bacteriochlorophyll-mediated processes. Major differences between oxygenic and anoxygenic phototrophic bacteria relate to their photosynthetic pigments and the structure and complexity of the photosynthetic apparatus (Stanier et al., 1981). Photosynthesis in anoxygenic phototrophic bacteria depends on oxygen-deficient conditions, because synthesis of the photosynthetic pigments is repressed by oxygen (bacteria like Erythrobacter longus are exceptions to this rule); in contrast to photosynthesis in plants and cyanobacteria (including Prochloron and related forms), oxygen is not produced. Unlike the cyanobacteria and eukaryotic algae, anoxygenic phototrophic bacteria are unable to use water as an electron donor. Most characteristically, sulfide and other reduced sulfur compounds, but also hydrogen and a number of small organic molecules, are used as photosynthetic electron donors. [Anoxygenic photosynthesis with sulfide, an inhibitor of photosystem II, as electron donor is also carried out by some cyanobacteria using photosystem I only (Cohen et al., 1975; Garlick et al., 1977).] As a consequence, the ecological niches of anoxygenic phototrophic bacteria are anoxic parts of waters and sediments, which receive light of sufficient quantity and quality to allow phototrophic development. Representatives of this group are widely distributed in nature and found in freshwater, marine, and hypersaline environments, hot springs, and arctic lakes, as well as elsewhere. They live in all kinds of stagnant water bodies, in lakes, waste water ponds, coastal lagoons, stratified lakes, and other aquatic habitats, but also in marine coastal sediments, in moist soils, and in paddy fields.


Photosynthetic Bacterium Green Sulfur Bacterium Phototrophic Bacterium Reduce Sulfur Compound Rhodopseudomonas Palustris 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiba, T., Usami, R., and Horikoshi, K., 1983, Rhodopseudomoas rutila, a new species of non-sulfur purple photosynthetic bacteria, Int. J. Syst. Bacteriol. 33: 551–556.Google Scholar
  2. Amesz, J., and Knaff, D. B., 1988, Molecular mechanism of bacterial photosynthesis, in: Biology of Anaerobic Microorganisms ( A. J. B. Zehnder, ed.), Wiley, Chichester, pp. 113–178.Google Scholar
  3. Bauld, J., and Brock, T. D., 1973, Ecological studies of Chloroflexus, a gliding photosynthetic bacterium, Arch. Mikrobiol. 92: 267–284.Google Scholar
  4. Bavendamm, W., 1924, Die farblosen und roten Schwefelbakterien des Suss-und Salzwassers, Fischer Verlag, Jena.Google Scholar
  5. Beer-Romero, P., and Gest, H., 1987, Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll g, FEMS Microbiol. Lett. 41: 109–114.Google Scholar
  6. Beer-Romero, P., Favinger, J. L., and Gest, H., 1988, Distinctive properties of bacilliform photosynthetic heliobacteria, FEMS Microbiol. Lett. 49: 451–454.Google Scholar
  7. Biebl, H., and Pfennig, N., 1978, Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria, Arch. Microbiol. 117: 9–16.Google Scholar
  8. Breuker, E., 1964, Die Verwertung von intrazellulärem Schwefel durch Chromatium vinosum im aeroben und anaeroben Licht-und Dunkelstoffwechsel, Zentralbl. Bakteriol. Parasitenkd. Hyg. Abt. 118: 561–568.Google Scholar
  9. Brock, T. D., 1978, Thermophilic Microorganisms and Life at High Temperature, Springer-Verlag, New York.Google Scholar
  10. Brockmann, H., Jr., and Lipinski, A., 1983, Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum, Arch. Microbiol. 136: 17–19.Google Scholar
  11. Caumette, P., Baulaigue, R., and Matheron, R., 1988, Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean Salinas, Syst. Appl. Microbiol. 10: 284–292.Google Scholar
  12. Caumette, P., Baulaigue, R., and Matheron, R., 1991, Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium, Arch. Microbiol. 155: 170–176.Google Scholar
  13. Cohen, Y., Jorgensen, B. B., Padan, E., and Shilo, M., 1975, Sulfide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica, Nature 257: 486–492.Google Scholar
  14. Cohen, Y., Krumbein, W. E., and Shilo, M., 1977, Solar Lake (Sinai). II. Distribution of photosynthetic microorganisms and primary production, Limnol. Oceanogr. 22: 609–620.Google Scholar
  15. Cohen-Bazire, G., 1963, Some observations on the organization of the photosynthetic apparatus in purple and green bacteria, in: Bacterial Photosynthesis ( H. Gest, A. San Pietro, and L. P. Vernon, eds.), Antioch Press, Yellow Springs, Ohio, pp. 89–110.Google Scholar
  16. Cohen-Bazire, G., Pfennig, N., and Kunizawa, R., 1964, The fine structure of green bacteria, J. Cell Biol. 22: 207–225.PubMedGoogle Scholar
  17. Culver, D. A., and Brunskill, G. J., 1969, Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic lake, Limnol. Oceanogr. 14: 862–873.Google Scholar
  18. De Wit, R., and van Gemerden, H., 1987, Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina, FEMS Microbiol. Ecol. 45: 117–126.Google Scholar
  19. Dickerson, R. E., 1980, Evolution and gene transfer in purple photosynthetic bacteria, Nature 283: 210–212.PubMedGoogle Scholar
  20. Drews, G., 1981, Rhodospirillum salexigens, spec. nov., an obligatory halophilic phototrophic bacterium, Arch. Microbiol. 130: 325–327.Google Scholar
  21. Dubinina, G. A., and Gorlenko, V. M., 1975, New filamentous photosynthetic green bacteria containing gas vacuoles, Mikrobiology 44: 452–458.Google Scholar
  22. Eckersley, K., and Dow, C. S., 1980, Rhodopseudomonas blastica sp. nov.: A member of the Rhodospirillaceae, J. Gen. Microbiol. 119: 465–473.Google Scholar
  23. Eichler, B., and Pfennig, N., 1986, Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioforis sp. nov., Arch. Microbiol. 146: 295–300.Google Scholar
  24. Eichler, B., and Pfennig, N., 1988, A new purple sulfur bacterium from stratified fresh-water lakes, Amoebobacter purpureus sp. nov., Arch. Microbiol. 149: 395–400.Google Scholar
  25. Evans, M. C. W., Buchanan, B. B., and Arnon, D. I., 1966, A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium, Proc. Natl. Acad. Sci. USA 55: 928934.Google Scholar
  26. Evans, W. R., Fleischmann, D. E., Calvert, H. E., Pyati, P. V., Alter, G. M., and Rao, N. S. S., 1990, Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTAi 1, Appl. Environm. Microbiol. 56: 3445–3449.Google Scholar
  27. Favinger, J., Stadtwald, R., and Gest, H., 1989, Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium, Ant. Leeuwenh. 55: 29 1296.Google Scholar
  28. Fenchel, T., 1969, The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa, Ophelia 6: 1–182.Google Scholar
  29. Fowler, V. J., Pfennig, N., Schubert, W., and Stackebrandt, E., 1984, Towards a phylogeny of phototrophic purple sulfur bacteria-16S rRNA oligonucleotide cataloguing of 11 species of Chromatiaceae, Arch. Microbiol. 139: 382–387.Google Scholar
  30. Fuchs, G., Stupperich, E., and Jaenchen, R., 1980a, Autotrophic CO2 fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells, Arch. Microbiol. 128: 56–63.Google Scholar
  31. Fuchs, G., Stupperich, E., and Eden, G., 1980b, Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells, Arch. Microbiol. 128: 64–71.Google Scholar
  32. Garlick, S., Oren, A., and Padan, E., 1977, Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria, J. Bacteriol. 129: 623–629.PubMedGoogle Scholar
  33. Gerola, P. D., and Olson, J. M., 1986, A new bacteriochlorophyll a—protein complex associated with chlorosomes of green sulfur bacteria, Biochim. Biophys. Acta 848: 69–76.PubMedGoogle Scholar
  34. Gest, H., and Favinger, J. F., 1983, Heliobacterium chlorum, an anoxygenic brownish-green bacterium containing a “new” form of bacteriochlorophyll, Arch. Microbiol. 136: 11–16.Google Scholar
  35. Gibson, J., Stackebrandt, E., Zablen, L. B., Gupta, R., and Woese, R. W., 1979, A phylogenetic analysis of the purple photosynthetic bacteria, Curr. Microbiol. 3: 59–64.Google Scholar
  36. Gibson, J., Pfennig, N., and Waterbury, J. B., 1984, Chloroherpeton thalassium gen. nov. et spec. nov., a nonfilamentous, flexing, and gliding green sulfur bacterium, Arch. Microbiol. 138: 96–101.PubMedGoogle Scholar
  37. Gibson, J., Ludwig, W., Stackebrandt, E., and Woese, C. R., 1985, The phylogeny of the green photosynthetic bacteria: Absence of a close relationship between Chlorobium and Chloroflexus, Syst. Appl. Microbiol. 6: 152–156.Google Scholar
  38. Giovannoni, S. J., Revsbech, N. P., Ward, D. M., and Castenholz, R. W., 1987, Obligately phototrophic Chlorof lexus: Primary production in anaerobic hot spring microbial mats, Arch. Microbiol. 147: 80–87.Google Scholar
  39. Gloe, A., and Risch, N., 1978, Bacteriochlorophyll Cs, a new bacteriochlorophyll from Chloroflexus aurantiacus, Arch. Microbiol. 118: 153–156.PubMedGoogle Scholar
  40. Gloe, A., Pfennig, N., Brockmann, H., Jr., and Trowitsch, W., 1975, A new bacteriochlorophyll from brown-colored Chlorobiaceae, Arch. Microbiol. 102: 103–109.PubMedGoogle Scholar
  41. Gorlenko, V. M., 1972, Phototrophic brown sulfur bacteria Pelodictyon phaeum non. sp., Microbiologia 41: 370–371 [in Russian].Google Scholar
  42. Gorlenko, V. M., 1974, Oxidation of thiosulphate by Amoebobacter roseus in darkness under microaerobic conditions, Microbiologia 43: 729–731 [in Russian].Google Scholar
  43. Gorlenko, V. M., 1975, Characteristics of filamentous phototrophic bacteria from freshwater lakes, Microbiology 44: 682–684.Google Scholar
  44. Gorlenko, V. M., and Lebedeva, E. V., 1971, New green sulphur bacteria with apophyses, Microbiologia 40: 1035–1039 [in Russian].Google Scholar
  45. Gorlenko, V. M., and Pivovarova, T. A., 1977, On the belonging of blue-green alga Oscillatoria coerulescens Gickelhorn, 1921 to a new genus of Chlorobacteria Oscillochloris nov. gen., lzv. Akad. Nauk SSSR Ser. Biol. 3: 396–409 [in Russian].Google Scholar
  46. Gorlenko, V. M., and Krasilnikova, E. N., Kikina, O. G., and Tatarinova, N. Ju., 1979, The new motile purple sulphur bacteria Lamprobacter modestohalophilus nov. gen., nov. spec. with gas vacuoles, Biol. Bull. Acad. Sci. USSR 6: 631–642 [in Russian].Google Scholar
  47. Gorlenko, V. M., Dubinina, G. A., and Kusnetzov, S. I., 1983, The Ecology of Aquatic Microorganisms, Schweitzbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  48. Guerrero, R., Pedros-Alio, C., Esteve, I., and Mas, J., 1987, Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region, Acta Acad. Aboensis 47: 125–151.Google Scholar
  49. Hansen, T. A., 1974, Sulfide als electronendonor voor Rhodospirillaceae, Doctoral thesis, University of Groningen, The Netherlands.Google Scholar
  50. Hansen, T. A., and Imhoff, J. F., 1985, Rhodobacter veldkampii, a new species of phototrophic purple nonsulfur bacteria, Int. J. Syst. Bacteriol. 35: 115–116.Google Scholar
  51. Hansen, T. A., and van Gemerden, H., 1972, Sulfide utilization by purple nonsulfur bacteria, Arch. Mikrobiol. 86: 49–56.PubMedGoogle Scholar
  52. Hansen, T. A., and Veldkamp, H., 1973, Rhodopseudomonas sulfulophila nov. spec., a new species of the purple nonsulfur bacteria, Arch. Mikrobiol. 92: 45–58.Google Scholar
  53. Hansen, T. A., Sepers, A. B. J., and van Gemerden, H., 1975, A new purple bacterium that oxidizes sulfide to extracellular sulfur and sulfate, Plant Soil 43: 17–27.Google Scholar
  54. Harashima, K., Hayashi, J.-I., Ikari, T., and Shiba, T., 1980, 02-stimulated synthesis of bac- teriochlorophyll and carotenoids in marine bacteria, Plant Cell Physiol. 21: 1283–1294.Google Scholar
  55. Hendley, D. D., 1955, Endogenous fermentation in Thiorhodaceae, J. Bacteriol. 70: 625–634.PubMedGoogle Scholar
  56. Hiraishi, A., Hoshino, Y., and Satoh, T., 1991, Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch. Microbiol. 155: 330–336.Google Scholar
  57. Hoffmann, C., 1949, Über die Durchlässigkeit dünner Sandschichten für Licht, Planta 37: 4856.Google Scholar
  58. Hofman, P. A. G., Veldhuis, M. J. W., and van Gemerden, H., 1985, Ecological significance of acetate assimilation by Chlorobium phaeobacteroides, FEMS Microbiol. Lett. 31: 271–278.Google Scholar
  59. Holt, S. C., Conti, S. F., and Fuller, R. C., 1966, Effect of light intensity on the formation of the photochemical apparatus in the green bacterium Chloropseudomonas ethylicum, J. Bacteriol. 91: 349–355.PubMedGoogle Scholar
  60. Iba, K., Takamiya, K.-I., Toh, Y., and Nishimura, M., 1988, Roles of bacteriochlorophyll and carotenoid synthesis in formation of intracytoplasmic membrane systems and pigment—protein complexes in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114, J. Bacteriol. 170: 1843–1847.PubMedGoogle Scholar
  61. Imhoff, J. F., 1982, Taxonomic and phylogenetic implications of lipid and quinone compositions in phototrophic microorganisms, in: Biochemistry and Metabolism of Plant Lipids ( J. F. G. M. Wintermans and P. J. C. Kuiper, eds.), Elsevier Biomedical Press, Amsterdam, pp. 541–544.Google Scholar
  62. Imhoff, J. F., 1983, Rhodopseudomonas marina sp. nov, a new marine phototrophic purple bacterium, Syst. Appl. Microbiol. 4: 512–521.Google Scholar
  63. Imhoff, J. F., 1984a, Reassignement of the genus Ectothiorhodospira Pelsh 1936 to a new family Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Ba-vendamm 1924, Int. J. Syst. Bacteriol. 34: 338–339.Google Scholar
  64. Imhoff, J. F., 1984b, Quinones of phototrophic purple bacteria, FEMS Microbiol. Lett. 25: 8589.Google Scholar
  65. Imhoff, J. F., 1988a, Halophilic phototrophic bacteria, in: Halophilic Bacteria ( F. Rodriguez-Valera, ed.), CRC Press, Boca Raton, Florida, pp. 85–108.Google Scholar
  66. Imhoff, J. F., 1988b, Lipids, fatty acids and quinones in taxonomy and phylogeny of anoxygenic phototrophic bacteria, in: Green Photosynthetic Bacteria ( J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Trüper, eds.), Plenum Press, New York, pp. 223–232.Google Scholar
  67. Imhoff, J. F., 1988c, Anoxygenic phototrophic bacteria, in: Methods in Aquatic Bacteriology ( B. Austin, ed.), Wiley, Chichester, pp. 207–240.Google Scholar
  68. Imhoff, J. F., 1989a, Genus Ectothiorhodospira in: Bergey’s Manual of Systematic Bacteriology, Volume 3 (J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, eds.), Williams and Wilkins, Baltimore, pp. 1654–1658.Google Scholar
  69. Imhoff, J. F., and Trüper, H. G., 1981, Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkaliphilic phototrophic bacterium, Zentralbi. Bakteriol. Hyg. I. Abt. Orig. C2: 228–234.Google Scholar
  70. Imhoff, J. F., and Trüper, H. G., 1989, The purple nonsulfur bacteria, in: Bergey’s Manual of Systematic Bacteriology, Volume 3 ( J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, eds.), Williams and Wilkins, Baltimore, pp. 1658–1661.Google Scholar
  71. Imhoff, J. F., Sahl, H. G., Soliman, G. S. H., and Trüper, H. G., 1979, The Wadi Natrun: Chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes, Geomicrobiology 1: 219–234.Google Scholar
  72. Imhoff, J. F., Tindall, B., Grant, W. D., and Trüper, H. G., 1981, Ectothiorhodospira vacuolata sp. nov., a new phototrophic bacterium from soda lakes, Arch. Microbiol. 130: 238–242.Google Scholar
  73. Imhoff, J. F., Kushner, D. J., Kushwaha, S. C., and Kates, M., 1982, Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families, J. Bacteriol. 150: 1192–1201.PubMedGoogle Scholar
  74. Imhoff, J. F., Trüper, H. G., and Pfennig, N., 1984, Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”, Int. J. Syst. Bacteriol. 34: 340–343.Google Scholar
  75. Ivanovsky, R. N., Sinton, N. V., and Kondratieva, E. N., 1980, ATP-linked citrate lyase activityGoogle Scholar
  76. Neutzling, O., Imhoff, J. F., and Trüper, H. G., 1984, Rhodopseudomonas adriatica sp. nov., a new species of the Rhodospirillaceae, dependent on reduced sulfur compounds, Arch. Microbiol. 137: 256–261.Google Scholar
  77. Nishimura, Y., Shimizu, M., and Iizuka, H., 1981, Bacteriochlorophyll formation in radiation-resistent Pseudomonas radiora, J. Gen. Appi. Microbiol. 27: 427–430.Google Scholar
  78. Nissen, H., and Dundas, I. D., 1984, Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium from a Portuguese saltern, Arch. Microbiol. 138: 251–256.Google Scholar
  79. Oelze, J., and Drews, G., 1972, Membranes of photosynthetic bacteria, Biochim. Biophys. Acta 265:209–239.Google Scholar
  80. Oren, A., Kessel, M., and Stackebrandt, E., 1989, Ectothiorhodospira marismortui sp. nov., an obligatory anaerobic, moderately halophilic purple sulfur bacterium from a hypersaline sulfur spring on the shore of the Dead Sea, Arch. Microbiol. 151: 524–529.Google Scholar
  81. Ormerod, J., Nesbakken, T., and Torgersen, Y., 1990, in: Current Research in Photosynthesis, Volume IV (M. Baltscheffsky, ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 935–938.Google Scholar
  82. Overmann, J., and Pfennig, N., 1989, Pelodictyon phaeoclathrathiforme, sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies, Arch. Microbiol. 152: 401–406.Google Scholar
  83. Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., Studier, J. A., and Woese, C. R., 1987, The green non-sulfur bacteria: A deep branching in the eubacterial line of descent, Syst. Appi. Microbiol. 9: 47–53.Google Scholar
  84. Pfennig, N., 1967, Photosynthetic bacteria, Annu. Rev. Microbiol. 21: 285–324.PubMedGoogle Scholar
  85. Pfennig, N., 1969, Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria, J. Bacteriol. 99: 597–602.Google Scholar
  86. Pfennig, N., 1974, Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae, Arch. Microbiol. 100: 197–206.Google Scholar
  87. Pfennig, N., 1977, Phototrophic green and purple bacteria: A comparative systematic survey, Annu. Rev. Microbiol. 31: 275–290.PubMedGoogle Scholar
  88. Pfennig, N., 1978, General physiology and ecology of photosynthetic bacteria, in: The Photosynthetic Bacteria ( R. E. Clayton, and W. R. Sistrom, eds.), Plenum Press, New York, pp. 318.Google Scholar
  89. Pfennig, N., 1989a, Green sulfur bacteria, in: Bergey’s Manual of Systematic Bacteriology, Volume 3 ( J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt, eds.), Williams and Wilkins, Baltimore, pp. 1682–1683.Google Scholar
  90. Pfennig, N., 1989b, Multicellular filamentous green bacteria, in: Bergey’s Manual of Systematic Bacteriology, Volume 3 ( J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt, eds.), Williams and Wilkins, Baltimore, p. 1697.Google Scholar
  91. Pfennig, N., 1989c, Addendum to the green sulfur bacteria, in: Bergey’s Manual of Systematic Bacteriology, Volume 3 ( J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt, eds.), Williams and Wilkins, Baltimore, p. 1696–1697.Google Scholar
  92. Pfennig, N., 1989d, Ecology of phototrophic purple and green sulfur bacteria, in: Autotrophic Bacteria ( H. G. Schlegel and B. Bowien, eds.), Springer-Verlag, Heidelberg, pp. 97–116.Google Scholar
  93. Pfennig, N., and Trüper, H. G., 1971, Higher taxa of the phototrophic bacteria, Int. J. Syst. Bacteriol. 21: 17–18.Google Scholar
  94. Pfennig, N., and Trüper, H. G., 1974, The phototrophic bacteria. in: Bergey’s Manual of Determinative Bacteriology ( R. E. Buchanan and N. E. Gibbons, eds.), Williams and Wilkins, Baltimore, pp. 24–64.Google Scholar
  95. Pierson, B. K., and Castenholz, R. W., 1974a, A phototrophic, gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov., Arch. Microbiol. 100: 5–24.PubMedGoogle Scholar
  96. Pierson, B. K., and Castenholz, R. W., 1974b, Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic, filamentous bacterium, Arch. Microbiol. 100: 283–301.Google Scholar
  97. Pierson, B., K., Giovannoni, S. J., Stahl, D. A., and Castenholz, R. W., 1985, Heliothrix oregonensis gen. nov., spec. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a, Arch. Microbiol. 142: 164–167.Google Scholar
  98. Pivovarova, T. A., and Gorlenko, V. M., 1977, Fine structure of Chloroflexus aurantiacus var. mesophilus (nom. prof.) grown in the light under aerobic and anaerobic conditions. Microbiology 46: 276–282.Google Scholar
  99. Puchkova, N. N., 1984, Green sulfur bacteria inhabiting shallow saline water bodies, Mikrobiologiya 53: 324–328 [in Russian].Google Scholar
  100. Rodriguez-Valera, F., Ventosa, A., Juez, G., and Imhoff, J. F., 1985, Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern, Microb. Ecol. 11: 107–115.Google Scholar
  101. Sato, K., 1978, Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AM 1, FEBS Lett. 85: 207–210.PubMedGoogle Scholar
  102. Schmidt, K., 1978, Biosynthesis of carotenoids, in: The Photosynthetic Bacteria ( R. K. Clayton, and W. R. Sistrom, eds.), Plenum Press, New York, pp. 729–750.Google Scholar
  103. Schmidt, K., and Bowien, B., 1983, Notes on the description of Rhodopseudomonas blastica, Arch. Microbiol. 136: 242.Google Scholar
  104. Seewaldt, E., Schleifer, K.-H., Bock, E., and Stackebrandt, E., 1982, The close phylogenetic relationship of Nitrobacter and Rhodopseudomonas palustris, Arch. Microbiol. 131: 287–290.Google Scholar
  105. Shiba, T., 1984, Utilization of light energy by the strictly aerobic bacterium Erythrobacter sp. OCH 114, J. Gen. Appl. Microbiol. 30: 239–244.Google Scholar
  106. Shiba, T., 1991, Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a, Syst. Appl. Microbiol. 14: 140–145.Google Scholar
  107. Shiba, T., and Simidu, U., 1982, Erythrobacter longus gen. nov., spec. nov., an aerobic bacterium which contains bacteriochlorophyll a, Int. J. Syst. Bacteriol. 32: 211–217.Google Scholar
  108. Shiba, T., Simidu, U., and Taga, N., 1979, Distribution of aerobic bacteria which contain bacteriochlorophyll a, Appl. Environ. Microbiol. 38: 43–45.PubMedGoogle Scholar
  109. Shimada, K., Hayashi, H., and Tasumi, M., 1985, Bacteriochlorophyll–protein complexes of aerobic bacteria, Erythrobacter longus and Erythrobacter species OCH 114, Arch. Microbiol. 143: 244–247.Google Scholar
  110. Stackebrandt, E., and Woese, C. R., 1981, The evolution of procaryotes, in: Molecular and Cellular Aspects of Microbial Evolution ( M. J. Carlile, J. R. Collins, and B. E. B. Moseley, eds.), Cambridge University Press, Cambridge, pp. 1–31.Google Scholar
  111. Stackebrandt, E., Fowler, V. J., Schubert, W., and Imhoff, J. F., 1984, Towards a phylogeny of phototrophic purple bacteria—The genus Ectothiorhodospira, Arch. Microbiol. 137: 366–370.Google Scholar
  112. Stackebrandt, E., Murray, R. G. E., and Trüper, H. G., 1988, Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”, Int. J. Syst. Bacteriol. 38: 321–325.Google Scholar
  113. Stadtwald-Demchick, R., Turner, F. R., and Gest, H., 1990, Rhodopseudomonas cryptolactis, sp. nov., a new thermotolerant species of budding phototrophic purple bacteria, FEMS Microbiol. Lett. 71: 117–122.Google Scholar
  114. Staehelin, L. A., Fuller, R. C., and Drews, G., 1978, Visualization of the supramolecular architecture of chlorosomes (chlorobium vesicles) in freeze-fractured cells of Chloroflexus aurantiacus, Arch. Microbiol. 119: 269–277.Google Scholar
  115. Staehelin, L. A., Golecki, J. R., and Drews, G., 1980, Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola, Biochim. Biophys. Acta 589: 30–45.PubMedGoogle Scholar
  116. Stanier, R. Y., Pfennig, N., and Trüper, H. G., 1981, Introduction to the phototrophic prokaryotes, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, New York, pp. 197–211.Google Scholar
  117. Steiner, R., Schäfer, W., Blos, I., Wieschoff, H., and Scheer, H., 1981, Phytadienol as esterifying alcohol of bacteriochlorophyll b from Ectothiorhodospira halochloris, Z. Naturforsch. 36c: 417–420.Google Scholar
  118. Takahashi, M., and Ichimura, S., 1968, Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes, Limnol. Oceanogr. 13: 644–655.Google Scholar
  119. Trüper, H. G., 1989, Genus Erythrobacter, in: Bergey’s Manual of Systematic Bacteriology, Volume 3 ( J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, eds.), Williams and Wilkins, Baltimore, pp. 1708–1709.Google Scholar
  120. Trüper, H. G., and Pfennig, N., 1981, Characterization and identification of the anoxygenic phototrophic bacteria, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, New York, pp. 299–312.Google Scholar
  121. Van Gemerden, H., 1968, On the ATP generation by Chromatium in darkness, Arch. Mikrobiol. 64: 118–124.PubMedGoogle Scholar
  122. Van Gemerden, H., 1974, Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria, Microb. Ecol. 1: 104–119.Google Scholar
  123. Van Gemerden, H., and Beeftink, H. H., 1981, Coexistence of Chlorobium and Chromatium in a sulfide-limited continuous culture, Arch. Microbiol. 129: 32–34.Google Scholar
  124. Van Gemerden, H., and Beeftink, H. H., 1983, Ecology of phototrophic bacteria, in: The Phototrophic Bacteria ( J. G. Ormerod, ed.), Blackwell, Oxford, pp. 146–185.Google Scholar
  125. Veldhuis, M. J. W., and van Gemerden, H., 1986, Competition between purple and brown phototrophic bacteria: Sulfide, acetate, and light as limiting factors, FEMS Microbiol. Ecol. 38: 31–38.Google Scholar
  126. Weckesser, J., Drews, G., Mayer, H., and Fromme, I., 1974, Lipopolysaccharide aus Rhodospirillaceae, Zusammensetzung und taxonomische Relevanz, Zentralbi. Bakteriol. Hyg. I. Abt. Orig. A 228: 193–198.Google Scholar
  127. Weckesser, J., Drews, G., and Mayer, H., 1979, Lipopolysaccharides of photosynthetic prokaryotes, Ann. Rev. Microbiol. 33: 215–239.Google Scholar
  128. Wetzel, R. G., 1973, Productivity investigations of interconnected lakes. I. The eight lakes of the Oliver and Walters chains, northeastern Indiana, Hydrobiol. Stud. 3: 91–143.Google Scholar
  129. Widdel, F., 1988, Microbiology and ecology of sulfate-and sulfur-reducing bacteria, in: Biology of Anaerobic Microorganisms ( A. J. B. Zehnder, ed.), Wiley, Chichester, pp. 469–585.Google Scholar
  130. Wijbenga, D.J., and van Gemerden, H., 1981, The influence of acetate on the oxidation of sulfide by Rhodopseudomonas capsulata, Arch. Microbiol. 129: 115–118.Google Scholar
  131. Woese, C. R., 1987, Bacterial evolution, Microbiol. Rev. 51: 221–271.PubMedGoogle Scholar
  132. Woese, C. R., Stackebrandt, E., Weisburg, W. G., Paster, B. J., Madigan, M. T., Fowler, V. J., Hahn, C. M., Blanz, P., Gupta, R., Nealson, K. H., and Fox, G. E., 1984a, The phylogeny of purple bacteria: The alpha subdivision, Syst. Appl. Microbiol. 5: 315–326.PubMedGoogle Scholar
  133. Woese, C. R., Weisburg, W. G., Paster, B. J., Hahn, C. M., Tanner, R. S., Krieg, N. R., Koops, H.-P, Harms, H., and Stackebrandt, E., 1984b, The phylogeny of purple bacteria: The beta subdivision, Syst. Appl. Microbiol. 5: 327–336.Google Scholar
  134. Woese, C. R., Stackebrandt, E., Macke, T. J., and Fox, G. E., 1985a, A phylogenetic definition of the major eubacterial taxa, Sys. Appl. Microbiol. 6: 143–151.Google Scholar
  135. Woese, C. R., Weisburg, W. G., Hahn, C. M., Paster, B. J., Zablen, L. B., Lewis, B. J., Macke, T. J., Ludwig, W., and Stackebrandt, E., 1985b, The phylogeny of purple bacteria: The gamma subdivision, Syst. Appl. Microbiol. 6: 25–33.Google Scholar
  136. Woese, C. R., Debrunner-Vossbrinck, B. A., Oyaizu, H., Stackebrandt, E., and Ludwig, W., 1985c, Gram-positive bacteria: Possible photosynthetic ancestry, Science 229: 762–765.PubMedGoogle Scholar
  137. Yurkov, V. V., and Gorlenko, V. M., 1990, Erythrobacter sibiricus sp. nov., a new freshwater aerobic bacterial species containing bacteriochlorophyll a, Microbiology, 59: 85–89.Google Scholar
  138. Zablen, L., and Woese, C. R., 1975, Procaryote phylogeny IV: Concerning the phylogenetic status of a photosynthetic bacterium, J. Mol. Evol. 5: 25–34.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Johannes F. Imhoff
    • 1
  1. 1.Institut für Mikrobiologie und BiotechnologieRheinische Friedrich-Wilhelms-UniversitätBonnGermany

Personalised recommendations