Skip to main content

Taxonomy, Phylogeny, and General Ecology of Anoxygenic Phototrophic Bacteria

  • Chapter
Photosynthetic Prokaryotes

Part of the book series: Biotechnology Handbooks ((BTHA,volume 6))

Abstract

Phototrophic bacteria, including oxygenic and anoxygenic phototrophic bacteria, can transform light energy into metabolically useful chemical energy by chlorophyll- or bacteriochlorophyll-mediated processes. Major differences between oxygenic and anoxygenic phototrophic bacteria relate to their photosynthetic pigments and the structure and complexity of the photosynthetic apparatus (Stanier et al., 1981). Photosynthesis in anoxygenic phototrophic bacteria depends on oxygen-deficient conditions, because synthesis of the photosynthetic pigments is repressed by oxygen (bacteria like Erythrobacter longus are exceptions to this rule); in contrast to photosynthesis in plants and cyanobacteria (including Prochloron and related forms), oxygen is not produced. Unlike the cyanobacteria and eukaryotic algae, anoxygenic phototrophic bacteria are unable to use water as an electron donor. Most characteristically, sulfide and other reduced sulfur compounds, but also hydrogen and a number of small organic molecules, are used as photosynthetic electron donors. [Anoxygenic photosynthesis with sulfide, an inhibitor of photosystem II, as electron donor is also carried out by some cyanobacteria using photosystem I only (Cohen et al., 1975; Garlick et al., 1977).] As a consequence, the ecological niches of anoxygenic phototrophic bacteria are anoxic parts of waters and sediments, which receive light of sufficient quantity and quality to allow phototrophic development. Representatives of this group are widely distributed in nature and found in freshwater, marine, and hypersaline environments, hot springs, and arctic lakes, as well as elsewhere. They live in all kinds of stagnant water bodies, in lakes, waste water ponds, coastal lagoons, stratified lakes, and other aquatic habitats, but also in marine coastal sediments, in moist soils, and in paddy fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiba, T., Usami, R., and Horikoshi, K., 1983, Rhodopseudomoas rutila, a new species of non-sulfur purple photosynthetic bacteria, Int. J. Syst. Bacteriol. 33: 551–556.

    Google Scholar 

  • Amesz, J., and Knaff, D. B., 1988, Molecular mechanism of bacterial photosynthesis, in: Biology of Anaerobic Microorganisms ( A. J. B. Zehnder, ed.), Wiley, Chichester, pp. 113–178.

    Google Scholar 

  • Bauld, J., and Brock, T. D., 1973, Ecological studies of Chloroflexus, a gliding photosynthetic bacterium, Arch. Mikrobiol. 92: 267–284.

    Google Scholar 

  • Bavendamm, W., 1924, Die farblosen und roten Schwefelbakterien des Suss-und Salzwassers, Fischer Verlag, Jena.

    Google Scholar 

  • Beer-Romero, P., and Gest, H., 1987, Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll g, FEMS Microbiol. Lett. 41: 109–114.

    CAS  Google Scholar 

  • Beer-Romero, P., Favinger, J. L., and Gest, H., 1988, Distinctive properties of bacilliform photosynthetic heliobacteria, FEMS Microbiol. Lett. 49: 451–454.

    CAS  Google Scholar 

  • Biebl, H., and Pfennig, N., 1978, Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria, Arch. Microbiol. 117: 9–16.

    CAS  Google Scholar 

  • Breuker, E., 1964, Die Verwertung von intrazellulärem Schwefel durch Chromatium vinosum im aeroben und anaeroben Licht-und Dunkelstoffwechsel, Zentralbl. Bakteriol. Parasitenkd. Hyg. Abt. 118: 561–568.

    CAS  Google Scholar 

  • Brock, T. D., 1978, Thermophilic Microorganisms and Life at High Temperature, Springer-Verlag, New York.

    Google Scholar 

  • Brockmann, H., Jr., and Lipinski, A., 1983, Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum, Arch. Microbiol. 136: 17–19.

    CAS  Google Scholar 

  • Caumette, P., Baulaigue, R., and Matheron, R., 1988, Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean Salinas, Syst. Appl. Microbiol. 10: 284–292.

    Google Scholar 

  • Caumette, P., Baulaigue, R., and Matheron, R., 1991, Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium, Arch. Microbiol. 155: 170–176.

    Google Scholar 

  • Cohen, Y., Jorgensen, B. B., Padan, E., and Shilo, M., 1975, Sulfide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica, Nature 257: 486–492.

    Google Scholar 

  • Cohen, Y., Krumbein, W. E., and Shilo, M., 1977, Solar Lake (Sinai). II. Distribution of photosynthetic microorganisms and primary production, Limnol. Oceanogr. 22: 609–620.

    CAS  Google Scholar 

  • Cohen-Bazire, G., 1963, Some observations on the organization of the photosynthetic apparatus in purple and green bacteria, in: Bacterial Photosynthesis ( H. Gest, A. San Pietro, and L. P. Vernon, eds.), Antioch Press, Yellow Springs, Ohio, pp. 89–110.

    Google Scholar 

  • Cohen-Bazire, G., Pfennig, N., and Kunizawa, R., 1964, The fine structure of green bacteria, J. Cell Biol. 22: 207–225.

    PubMed  CAS  Google Scholar 

  • Culver, D. A., and Brunskill, G. J., 1969, Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic lake, Limnol. Oceanogr. 14: 862–873.

    CAS  Google Scholar 

  • De Wit, R., and van Gemerden, H., 1987, Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina, FEMS Microbiol. Ecol. 45: 117–126.

    Google Scholar 

  • Dickerson, R. E., 1980, Evolution and gene transfer in purple photosynthetic bacteria, Nature 283: 210–212.

    PubMed  CAS  Google Scholar 

  • Drews, G., 1981, Rhodospirillum salexigens, spec. nov., an obligatory halophilic phototrophic bacterium, Arch. Microbiol. 130: 325–327.

    CAS  Google Scholar 

  • Dubinina, G. A., and Gorlenko, V. M., 1975, New filamentous photosynthetic green bacteria containing gas vacuoles, Mikrobiology 44: 452–458.

    Google Scholar 

  • Eckersley, K., and Dow, C. S., 1980, Rhodopseudomonas blastica sp. nov.: A member of the Rhodospirillaceae, J. Gen. Microbiol. 119: 465–473.

    Google Scholar 

  • Eichler, B., and Pfennig, N., 1986, Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioforis sp. nov., Arch. Microbiol. 146: 295–300.

    CAS  Google Scholar 

  • Eichler, B., and Pfennig, N., 1988, A new purple sulfur bacterium from stratified fresh-water lakes, Amoebobacter purpureus sp. nov., Arch. Microbiol. 149: 395–400.

    CAS  Google Scholar 

  • Evans, M. C. W., Buchanan, B. B., and Arnon, D. I., 1966, A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium, Proc. Natl. Acad. Sci. USA 55: 928934.

    Google Scholar 

  • Evans, W. R., Fleischmann, D. E., Calvert, H. E., Pyati, P. V., Alter, G. M., and Rao, N. S. S., 1990, Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTAi 1, Appl. Environm. Microbiol. 56: 3445–3449.

    CAS  Google Scholar 

  • Favinger, J., Stadtwald, R., and Gest, H., 1989, Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium, Ant. Leeuwenh. 55: 29 1296.

    Google Scholar 

  • Fenchel, T., 1969, The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa, Ophelia 6: 1–182.

    Google Scholar 

  • Fowler, V. J., Pfennig, N., Schubert, W., and Stackebrandt, E., 1984, Towards a phylogeny of phototrophic purple sulfur bacteria-16S rRNA oligonucleotide cataloguing of 11 species of Chromatiaceae, Arch. Microbiol. 139: 382–387.

    CAS  Google Scholar 

  • Fuchs, G., Stupperich, E., and Jaenchen, R., 1980a, Autotrophic CO2 fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells, Arch. Microbiol. 128: 56–63.

    CAS  Google Scholar 

  • Fuchs, G., Stupperich, E., and Eden, G., 1980b, Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells, Arch. Microbiol. 128: 64–71.

    CAS  Google Scholar 

  • Garlick, S., Oren, A., and Padan, E., 1977, Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria, J. Bacteriol. 129: 623–629.

    PubMed  CAS  Google Scholar 

  • Gerola, P. D., and Olson, J. M., 1986, A new bacteriochlorophyll a—protein complex associated with chlorosomes of green sulfur bacteria, Biochim. Biophys. Acta 848: 69–76.

    PubMed  CAS  Google Scholar 

  • Gest, H., and Favinger, J. F., 1983, Heliobacterium chlorum, an anoxygenic brownish-green bacterium containing a “new” form of bacteriochlorophyll, Arch. Microbiol. 136: 11–16.

    CAS  Google Scholar 

  • Gibson, J., Stackebrandt, E., Zablen, L. B., Gupta, R., and Woese, R. W., 1979, A phylogenetic analysis of the purple photosynthetic bacteria, Curr. Microbiol. 3: 59–64.

    CAS  Google Scholar 

  • Gibson, J., Pfennig, N., and Waterbury, J. B., 1984, Chloroherpeton thalassium gen. nov. et spec. nov., a nonfilamentous, flexing, and gliding green sulfur bacterium, Arch. Microbiol. 138: 96–101.

    PubMed  CAS  Google Scholar 

  • Gibson, J., Ludwig, W., Stackebrandt, E., and Woese, C. R., 1985, The phylogeny of the green photosynthetic bacteria: Absence of a close relationship between Chlorobium and Chloroflexus, Syst. Appl. Microbiol. 6: 152–156.

    CAS  Google Scholar 

  • Giovannoni, S. J., Revsbech, N. P., Ward, D. M., and Castenholz, R. W., 1987, Obligately phototrophic Chlorof lexus: Primary production in anaerobic hot spring microbial mats, Arch. Microbiol. 147: 80–87.

    CAS  Google Scholar 

  • Gloe, A., and Risch, N., 1978, Bacteriochlorophyll Cs, a new bacteriochlorophyll from Chloroflexus aurantiacus, Arch. Microbiol. 118: 153–156.

    PubMed  CAS  Google Scholar 

  • Gloe, A., Pfennig, N., Brockmann, H., Jr., and Trowitsch, W., 1975, A new bacteriochlorophyll from brown-colored Chlorobiaceae, Arch. Microbiol. 102: 103–109.

    PubMed  CAS  Google Scholar 

  • Gorlenko, V. M., 1972, Phototrophic brown sulfur bacteria Pelodictyon phaeum non. sp., Microbiologia 41: 370–371 [in Russian].

    CAS  Google Scholar 

  • Gorlenko, V. M., 1974, Oxidation of thiosulphate by Amoebobacter roseus in darkness under microaerobic conditions, Microbiologia 43: 729–731 [in Russian].

    CAS  Google Scholar 

  • Gorlenko, V. M., 1975, Characteristics of filamentous phototrophic bacteria from freshwater lakes, Microbiology 44: 682–684.

    Google Scholar 

  • Gorlenko, V. M., and Lebedeva, E. V., 1971, New green sulphur bacteria with apophyses, Microbiologia 40: 1035–1039 [in Russian].

    CAS  Google Scholar 

  • Gorlenko, V. M., and Pivovarova, T. A., 1977, On the belonging of blue-green alga Oscillatoria coerulescens Gickelhorn, 1921 to a new genus of Chlorobacteria Oscillochloris nov. gen., lzv. Akad. Nauk SSSR Ser. Biol. 3: 396–409 [in Russian].

    Google Scholar 

  • Gorlenko, V. M., and Krasilnikova, E. N., Kikina, O. G., and Tatarinova, N. Ju., 1979, The new motile purple sulphur bacteria Lamprobacter modestohalophilus nov. gen., nov. spec. with gas vacuoles, Biol. Bull. Acad. Sci. USSR 6: 631–642 [in Russian].

    Google Scholar 

  • Gorlenko, V. M., Dubinina, G. A., and Kusnetzov, S. I., 1983, The Ecology of Aquatic Microorganisms, Schweitzbart’sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Guerrero, R., Pedros-Alio, C., Esteve, I., and Mas, J., 1987, Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region, Acta Acad. Aboensis 47: 125–151.

    Google Scholar 

  • Hansen, T. A., 1974, Sulfide als electronendonor voor Rhodospirillaceae, Doctoral thesis, University of Groningen, The Netherlands.

    Google Scholar 

  • Hansen, T. A., and Imhoff, J. F., 1985, Rhodobacter veldkampii, a new species of phototrophic purple nonsulfur bacteria, Int. J. Syst. Bacteriol. 35: 115–116.

    Google Scholar 

  • Hansen, T. A., and van Gemerden, H., 1972, Sulfide utilization by purple nonsulfur bacteria, Arch. Mikrobiol. 86: 49–56.

    PubMed  CAS  Google Scholar 

  • Hansen, T. A., and Veldkamp, H., 1973, Rhodopseudomonas sulfulophila nov. spec., a new species of the purple nonsulfur bacteria, Arch. Mikrobiol. 92: 45–58.

    CAS  Google Scholar 

  • Hansen, T. A., Sepers, A. B. J., and van Gemerden, H., 1975, A new purple bacterium that oxidizes sulfide to extracellular sulfur and sulfate, Plant Soil 43: 17–27.

    CAS  Google Scholar 

  • Harashima, K., Hayashi, J.-I., Ikari, T., and Shiba, T., 1980, 02-stimulated synthesis of bac- teriochlorophyll and carotenoids in marine bacteria, Plant Cell Physiol. 21: 1283–1294.

    Google Scholar 

  • Hendley, D. D., 1955, Endogenous fermentation in Thiorhodaceae, J. Bacteriol. 70: 625–634.

    PubMed  CAS  Google Scholar 

  • Hiraishi, A., Hoshino, Y., and Satoh, T., 1991, Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch. Microbiol. 155: 330–336.

    Google Scholar 

  • Hoffmann, C., 1949, Über die Durchlässigkeit dünner Sandschichten für Licht, Planta 37: 4856.

    Google Scholar 

  • Hofman, P. A. G., Veldhuis, M. J. W., and van Gemerden, H., 1985, Ecological significance of acetate assimilation by Chlorobium phaeobacteroides, FEMS Microbiol. Lett. 31: 271–278.

    Google Scholar 

  • Holt, S. C., Conti, S. F., and Fuller, R. C., 1966, Effect of light intensity on the formation of the photochemical apparatus in the green bacterium Chloropseudomonas ethylicum, J. Bacteriol. 91: 349–355.

    PubMed  CAS  Google Scholar 

  • Iba, K., Takamiya, K.-I., Toh, Y., and Nishimura, M., 1988, Roles of bacteriochlorophyll and carotenoid synthesis in formation of intracytoplasmic membrane systems and pigment—protein complexes in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114, J. Bacteriol. 170: 1843–1847.

    PubMed  CAS  Google Scholar 

  • Imhoff, J. F., 1982, Taxonomic and phylogenetic implications of lipid and quinone compositions in phototrophic microorganisms, in: Biochemistry and Metabolism of Plant Lipids ( J. F. G. M. Wintermans and P. J. C. Kuiper, eds.), Elsevier Biomedical Press, Amsterdam, pp. 541–544.

    Google Scholar 

  • Imhoff, J. F., 1983, Rhodopseudomonas marina sp. nov, a new marine phototrophic purple bacterium, Syst. Appl. Microbiol. 4: 512–521.

    Google Scholar 

  • Imhoff, J. F., 1984a, Reassignement of the genus Ectothiorhodospira Pelsh 1936 to a new family Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Ba-vendamm 1924, Int. J. Syst. Bacteriol. 34: 338–339.

    Google Scholar 

  • Imhoff, J. F., 1984b, Quinones of phototrophic purple bacteria, FEMS Microbiol. Lett. 25: 8589.

    Google Scholar 

  • Imhoff, J. F., 1988a, Halophilic phototrophic bacteria, in: Halophilic Bacteria ( F. Rodriguez-Valera, ed.), CRC Press, Boca Raton, Florida, pp. 85–108.

    Google Scholar 

  • Imhoff, J. F., 1988b, Lipids, fatty acids and quinones in taxonomy and phylogeny of anoxygenic phototrophic bacteria, in: Green Photosynthetic Bacteria ( J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Trüper, eds.), Plenum Press, New York, pp. 223–232.

    Google Scholar 

  • Imhoff, J. F., 1988c, Anoxygenic phototrophic bacteria, in: Methods in Aquatic Bacteriology ( B. Austin, ed.), Wiley, Chichester, pp. 207–240.

    Google Scholar 

  • Imhoff, J. F., 1989a, Genus Ectothiorhodospira in: Bergey’s Manual of Systematic Bacteriology, Volume 3 (J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, eds.), Williams and Wilkins, Baltimore, pp. 1654–1658.

    Google Scholar 

  • Imhoff, J. F., and Trüper, H. G., 1981, Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkaliphilic phototrophic bacterium, Zentralbi. Bakteriol. Hyg. I. Abt. Orig. C2: 228–234.

    Google Scholar 

  • Imhoff, J. F., and Trüper, H. G., 1989, The purple nonsulfur bacteria, in: Bergey’s Manual of Systematic Bacteriology, Volume 3 ( J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, eds.), Williams and Wilkins, Baltimore, pp. 1658–1661.

    Google Scholar 

  • Imhoff, J. F., Sahl, H. G., Soliman, G. S. H., and Trüper, H. G., 1979, The Wadi Natrun: Chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes, Geomicrobiology 1: 219–234.

    CAS  Google Scholar 

  • Imhoff, J. F., Tindall, B., Grant, W. D., and Trüper, H. G., 1981, Ectothiorhodospira vacuolata sp. nov., a new phototrophic bacterium from soda lakes, Arch. Microbiol. 130: 238–242.

    CAS  Google Scholar 

  • Imhoff, J. F., Kushner, D. J., Kushwaha, S. C., and Kates, M., 1982, Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families, J. Bacteriol. 150: 1192–1201.

    PubMed  CAS  Google Scholar 

  • Imhoff, J. F., Trüper, H. G., and Pfennig, N., 1984, Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”, Int. J. Syst. Bacteriol. 34: 340–343.

    Google Scholar 

  • Ivanovsky, R. N., Sinton, N. V., and Kondratieva, E. N., 1980, ATP-linked citrate lyase activity

    Google Scholar 

  • Neutzling, O., Imhoff, J. F., and Trüper, H. G., 1984, Rhodopseudomonas adriatica sp. nov., a new species of the Rhodospirillaceae, dependent on reduced sulfur compounds, Arch. Microbiol. 137: 256–261.

    CAS  Google Scholar 

  • Nishimura, Y., Shimizu, M., and Iizuka, H., 1981, Bacteriochlorophyll formation in radiation-resistent Pseudomonas radiora, J. Gen. Appi. Microbiol. 27: 427–430.

    CAS  Google Scholar 

  • Nissen, H., and Dundas, I. D., 1984, Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium from a Portuguese saltern, Arch. Microbiol. 138: 251–256.

    CAS  Google Scholar 

  • Oelze, J., and Drews, G., 1972, Membranes of photosynthetic bacteria, Biochim. Biophys. Acta 265:209–239.

    Google Scholar 

  • Oren, A., Kessel, M., and Stackebrandt, E., 1989, Ectothiorhodospira marismortui sp. nov., an obligatory anaerobic, moderately halophilic purple sulfur bacterium from a hypersaline sulfur spring on the shore of the Dead Sea, Arch. Microbiol. 151: 524–529.

    CAS  Google Scholar 

  • Ormerod, J., Nesbakken, T., and Torgersen, Y., 1990, in: Current Research in Photosynthesis, Volume IV (M. Baltscheffsky, ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 935–938.

    Google Scholar 

  • Overmann, J., and Pfennig, N., 1989, Pelodictyon phaeoclathrathiforme, sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies, Arch. Microbiol. 152: 401–406.

    CAS  Google Scholar 

  • Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., Studier, J. A., and Woese, C. R., 1987, The green non-sulfur bacteria: A deep branching in the eubacterial line of descent, Syst. Appi. Microbiol. 9: 47–53.

    CAS  Google Scholar 

  • Pfennig, N., 1967, Photosynthetic bacteria, Annu. Rev. Microbiol. 21: 285–324.

    PubMed  CAS  Google Scholar 

  • Pfennig, N., 1969, Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria, J. Bacteriol. 99: 597–602.

    CAS  Google Scholar 

  • Pfennig, N., 1974, Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae, Arch. Microbiol. 100: 197–206.

    CAS  Google Scholar 

  • Pfennig, N., 1977, Phototrophic green and purple bacteria: A comparative systematic survey, Annu. Rev. Microbiol. 31: 275–290.

    PubMed  CAS  Google Scholar 

  • Pfennig, N., 1978, General physiology and ecology of photosynthetic bacteria, in: The Photosynthetic Bacteria ( R. E. Clayton, and W. R. Sistrom, eds.), Plenum Press, New York, pp. 318.

    Google Scholar 

  • Pfennig, N., 1989a, Green sulfur bacteria, in: Bergey’s Manual of Systematic Bacteriology, Volume 3 ( J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt, eds.), Williams and Wilkins, Baltimore, pp. 1682–1683.

    Google Scholar 

  • Pfennig, N., 1989b, Multicellular filamentous green bacteria, in: Bergey’s Manual of Systematic Bacteriology, Volume 3 ( J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt, eds.), Williams and Wilkins, Baltimore, p. 1697.

    Google Scholar 

  • Pfennig, N., 1989c, Addendum to the green sulfur bacteria, in: Bergey’s Manual of Systematic Bacteriology, Volume 3 ( J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt, eds.), Williams and Wilkins, Baltimore, p. 1696–1697.

    Google Scholar 

  • Pfennig, N., 1989d, Ecology of phototrophic purple and green sulfur bacteria, in: Autotrophic Bacteria ( H. G. Schlegel and B. Bowien, eds.), Springer-Verlag, Heidelberg, pp. 97–116.

    Google Scholar 

  • Pfennig, N., and Trüper, H. G., 1971, Higher taxa of the phototrophic bacteria, Int. J. Syst. Bacteriol. 21: 17–18.

    Google Scholar 

  • Pfennig, N., and Trüper, H. G., 1974, The phototrophic bacteria. in: Bergey’s Manual of Determinative Bacteriology ( R. E. Buchanan and N. E. Gibbons, eds.), Williams and Wilkins, Baltimore, pp. 24–64.

    Google Scholar 

  • Pierson, B. K., and Castenholz, R. W., 1974a, A phototrophic, gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov., Arch. Microbiol. 100: 5–24.

    PubMed  CAS  Google Scholar 

  • Pierson, B. K., and Castenholz, R. W., 1974b, Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic, filamentous bacterium, Arch. Microbiol. 100: 283–301.

    CAS  Google Scholar 

  • Pierson, B., K., Giovannoni, S. J., Stahl, D. A., and Castenholz, R. W., 1985, Heliothrix oregonensis gen. nov., spec. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a, Arch. Microbiol. 142: 164–167.

    CAS  Google Scholar 

  • Pivovarova, T. A., and Gorlenko, V. M., 1977, Fine structure of Chloroflexus aurantiacus var. mesophilus (nom. prof.) grown in the light under aerobic and anaerobic conditions. Microbiology 46: 276–282.

    Google Scholar 

  • Puchkova, N. N., 1984, Green sulfur bacteria inhabiting shallow saline water bodies, Mikrobiologiya 53: 324–328 [in Russian].

    CAS  Google Scholar 

  • Rodriguez-Valera, F., Ventosa, A., Juez, G., and Imhoff, J. F., 1985, Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern, Microb. Ecol. 11: 107–115.

    CAS  Google Scholar 

  • Sato, K., 1978, Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AM 1, FEBS Lett. 85: 207–210.

    PubMed  CAS  Google Scholar 

  • Schmidt, K., 1978, Biosynthesis of carotenoids, in: The Photosynthetic Bacteria ( R. K. Clayton, and W. R. Sistrom, eds.), Plenum Press, New York, pp. 729–750.

    Google Scholar 

  • Schmidt, K., and Bowien, B., 1983, Notes on the description of Rhodopseudomonas blastica, Arch. Microbiol. 136: 242.

    CAS  Google Scholar 

  • Seewaldt, E., Schleifer, K.-H., Bock, E., and Stackebrandt, E., 1982, The close phylogenetic relationship of Nitrobacter and Rhodopseudomonas palustris, Arch. Microbiol. 131: 287–290.

    CAS  Google Scholar 

  • Shiba, T., 1984, Utilization of light energy by the strictly aerobic bacterium Erythrobacter sp. OCH 114, J. Gen. Appl. Microbiol. 30: 239–244.

    CAS  Google Scholar 

  • Shiba, T., 1991, Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a, Syst. Appl. Microbiol. 14: 140–145.

    Google Scholar 

  • Shiba, T., and Simidu, U., 1982, Erythrobacter longus gen. nov., spec. nov., an aerobic bacterium which contains bacteriochlorophyll a, Int. J. Syst. Bacteriol. 32: 211–217.

    Google Scholar 

  • Shiba, T., Simidu, U., and Taga, N., 1979, Distribution of aerobic bacteria which contain bacteriochlorophyll a, Appl. Environ. Microbiol. 38: 43–45.

    PubMed  CAS  Google Scholar 

  • Shimada, K., Hayashi, H., and Tasumi, M., 1985, Bacteriochlorophyll–protein complexes of aerobic bacteria, Erythrobacter longus and Erythrobacter species OCH 114, Arch. Microbiol. 143: 244–247.

    CAS  Google Scholar 

  • Stackebrandt, E., and Woese, C. R., 1981, The evolution of procaryotes, in: Molecular and Cellular Aspects of Microbial Evolution ( M. J. Carlile, J. R. Collins, and B. E. B. Moseley, eds.), Cambridge University Press, Cambridge, pp. 1–31.

    Google Scholar 

  • Stackebrandt, E., Fowler, V. J., Schubert, W., and Imhoff, J. F., 1984, Towards a phylogeny of phototrophic purple bacteria—The genus Ectothiorhodospira, Arch. Microbiol. 137: 366–370.

    CAS  Google Scholar 

  • Stackebrandt, E., Murray, R. G. E., and Trüper, H. G., 1988, Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”, Int. J. Syst. Bacteriol. 38: 321–325.

    Google Scholar 

  • Stadtwald-Demchick, R., Turner, F. R., and Gest, H., 1990, Rhodopseudomonas cryptolactis, sp. nov., a new thermotolerant species of budding phototrophic purple bacteria, FEMS Microbiol. Lett. 71: 117–122.

    CAS  Google Scholar 

  • Staehelin, L. A., Fuller, R. C., and Drews, G., 1978, Visualization of the supramolecular architecture of chlorosomes (chlorobium vesicles) in freeze-fractured cells of Chloroflexus aurantiacus, Arch. Microbiol. 119: 269–277.

    Google Scholar 

  • Staehelin, L. A., Golecki, J. R., and Drews, G., 1980, Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola, Biochim. Biophys. Acta 589: 30–45.

    PubMed  CAS  Google Scholar 

  • Stanier, R. Y., Pfennig, N., and Trüper, H. G., 1981, Introduction to the phototrophic prokaryotes, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, New York, pp. 197–211.

    Google Scholar 

  • Steiner, R., Schäfer, W., Blos, I., Wieschoff, H., and Scheer, H., 1981, Phytadienol as esterifying alcohol of bacteriochlorophyll b from Ectothiorhodospira halochloris, Z. Naturforsch. 36c: 417–420.

    Google Scholar 

  • Takahashi, M., and Ichimura, S., 1968, Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes, Limnol. Oceanogr. 13: 644–655.

    Google Scholar 

  • Trüper, H. G., 1989, Genus Erythrobacter, in: Bergey’s Manual of Systematic Bacteriology, Volume 3 ( J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, eds.), Williams and Wilkins, Baltimore, pp. 1708–1709.

    Google Scholar 

  • Trüper, H. G., and Pfennig, N., 1981, Characterization and identification of the anoxygenic phototrophic bacteria, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, New York, pp. 299–312.

    Google Scholar 

  • Van Gemerden, H., 1968, On the ATP generation by Chromatium in darkness, Arch. Mikrobiol. 64: 118–124.

    PubMed  Google Scholar 

  • Van Gemerden, H., 1974, Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria, Microb. Ecol. 1: 104–119.

    Google Scholar 

  • Van Gemerden, H., and Beeftink, H. H., 1981, Coexistence of Chlorobium and Chromatium in a sulfide-limited continuous culture, Arch. Microbiol. 129: 32–34.

    Google Scholar 

  • Van Gemerden, H., and Beeftink, H. H., 1983, Ecology of phototrophic bacteria, in: The Phototrophic Bacteria ( J. G. Ormerod, ed.), Blackwell, Oxford, pp. 146–185.

    Google Scholar 

  • Veldhuis, M. J. W., and van Gemerden, H., 1986, Competition between purple and brown phototrophic bacteria: Sulfide, acetate, and light as limiting factors, FEMS Microbiol. Ecol. 38: 31–38.

    CAS  Google Scholar 

  • Weckesser, J., Drews, G., Mayer, H., and Fromme, I., 1974, Lipopolysaccharide aus Rhodospirillaceae, Zusammensetzung und taxonomische Relevanz, Zentralbi. Bakteriol. Hyg. I. Abt. Orig. A 228: 193–198.

    CAS  Google Scholar 

  • Weckesser, J., Drews, G., and Mayer, H., 1979, Lipopolysaccharides of photosynthetic prokaryotes, Ann. Rev. Microbiol. 33: 215–239.

    CAS  Google Scholar 

  • Wetzel, R. G., 1973, Productivity investigations of interconnected lakes. I. The eight lakes of the Oliver and Walters chains, northeastern Indiana, Hydrobiol. Stud. 3: 91–143.

    Google Scholar 

  • Widdel, F., 1988, Microbiology and ecology of sulfate-and sulfur-reducing bacteria, in: Biology of Anaerobic Microorganisms ( A. J. B. Zehnder, ed.), Wiley, Chichester, pp. 469–585.

    Google Scholar 

  • Wijbenga, D.J., and van Gemerden, H., 1981, The influence of acetate on the oxidation of sulfide by Rhodopseudomonas capsulata, Arch. Microbiol. 129: 115–118.

    CAS  Google Scholar 

  • Woese, C. R., 1987, Bacterial evolution, Microbiol. Rev. 51: 221–271.

    PubMed  CAS  Google Scholar 

  • Woese, C. R., Stackebrandt, E., Weisburg, W. G., Paster, B. J., Madigan, M. T., Fowler, V. J., Hahn, C. M., Blanz, P., Gupta, R., Nealson, K. H., and Fox, G. E., 1984a, The phylogeny of purple bacteria: The alpha subdivision, Syst. Appl. Microbiol. 5: 315–326.

    PubMed  CAS  Google Scholar 

  • Woese, C. R., Weisburg, W. G., Paster, B. J., Hahn, C. M., Tanner, R. S., Krieg, N. R., Koops, H.-P, Harms, H., and Stackebrandt, E., 1984b, The phylogeny of purple bacteria: The beta subdivision, Syst. Appl. Microbiol. 5: 327–336.

    CAS  Google Scholar 

  • Woese, C. R., Stackebrandt, E., Macke, T. J., and Fox, G. E., 1985a, A phylogenetic definition of the major eubacterial taxa, Sys. Appl. Microbiol. 6: 143–151.

    CAS  Google Scholar 

  • Woese, C. R., Weisburg, W. G., Hahn, C. M., Paster, B. J., Zablen, L. B., Lewis, B. J., Macke, T. J., Ludwig, W., and Stackebrandt, E., 1985b, The phylogeny of purple bacteria: The gamma subdivision, Syst. Appl. Microbiol. 6: 25–33.

    CAS  Google Scholar 

  • Woese, C. R., Debrunner-Vossbrinck, B. A., Oyaizu, H., Stackebrandt, E., and Ludwig, W., 1985c, Gram-positive bacteria: Possible photosynthetic ancestry, Science 229: 762–765.

    PubMed  CAS  Google Scholar 

  • Yurkov, V. V., and Gorlenko, V. M., 1990, Erythrobacter sibiricus sp. nov., a new freshwater aerobic bacterial species containing bacteriochlorophyll a, Microbiology, 59: 85–89.

    Google Scholar 

  • Zablen, L., and Woese, C. R., 1975, Procaryote phylogeny IV: Concerning the phylogenetic status of a photosynthetic bacterium, J. Mol. Evol. 5: 25–34.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Imhoff, J.F. (1992). Taxonomy, Phylogeny, and General Ecology of Anoxygenic Phototrophic Bacteria. In: Mann, N.H., Carr, N.G. (eds) Photosynthetic Prokaryotes. Biotechnology Handbooks, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1332-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1332-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1334-3

  • Online ISBN: 978-1-4757-1332-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics