Mathematical Models of Bioturbation

  • Gerald Matisoff
Part of the Topics in Geobiology book series (TGBI, volume 100)

Abstract

The purpose of this chapter is to examine existing mathematical models of important chemical, physical, and biological effects of organisms on sediments. The objectives and nature of the models will be discussed, the mathematical solution techniques will be identified, and the advantages and disadvantages of each type of model will highlighted.

Keywords

Apparent Diffusion Coefficient Pore Water Mixed Layer Overlie Water Surficial Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aller, R. C., 1977, The influence of macrobenthos on chemical diagenesis of marine sediments, Ph.D. dissertation, Yale University, New Haven, Connecticut, 600 pp.Google Scholar
  2. Aller, R. C., 1978, The effects of animal–sediment interactions on geochemical processes near the sediment–water interface, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 157 - 172, Academic Press, New York.Google Scholar
  3. Aller, R. C., 1980a, Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment, Geochim. Cosmochim. Acta 44: 1955-1965.Google Scholar
  4. Aller, R. C., 1980b, Diagenetic processes near the sediment–water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S, N, P), in: Estuarine Physics and Chemistry: Studies in Long Island Sound (B. Saltzman, ed.), pp. 237-350, Advances in Geophysics, Volume 22, Academic Press, New York.Google Scholar
  5. Aller, R. C., and Cochran, J. K., 1976, 234Th/23°U disequilibrium in near-shore sediment: Particle reworking and diagenetic time scales, Earth Planet. Sci. Lett. 29: 37 - 50.Google Scholar
  6. Aller, R. C., and Dodge, R. E., 1974, Animal–sediment relations in a tropical lagoon, Dis-covery Bay, Jamaica, J. Mar. Res. 32: 209 - 232.Google Scholar
  7. Aller, R. C., Benninger, L. K., and Cochran, J. K., 1980, Tracking particle associated processes in nearshore environments by use of 234Th/238U disequilibrium, Earth Planet. Sci. Lett. 47: 161 - 175.Google Scholar
  8. Amiard-Triquet, C., 1974, Etude experimentale de la contamination par le cérium 144 et le fer 59 d’un sédiment à Arenicola marina L. (Annelide Polychete), Cah. Biol. Mar. 15: 483 - 494.Google Scholar
  9. Benninger, L. K., Aller, R. C., Cochran, J. K., and Turekian, K. K., 1979, Effects of biological sediment mixing on the 210Pb chronology and trace metal distribution in a Long Island Sound sediment core, Earth Planet. Sci. Lett. 43: 241 - 259.Google Scholar
  10. Benoit, G. J., Turekian, K. K., and Benninger, L. K., 1979, Radiocarbon dating of a core from Long Island Sound, Estuarine Coastal Mar. Sci. 9: 171 - 180.Google Scholar
  11. Berger, W. H., and Heath, G. R., 1968, Vertical mixing in pelagic sediments, J. Mar. Res. 26: 134 - 143.Google Scholar
  12. Berner, R. A., 1980, Early Diagenesis: A Theoretical Approach, Princeton University Press, Princeton, New Jersey, 241 pp.Google Scholar
  13. Blanc-Lapierre, A., and Fortet, R., 1965, Theory of Random Functions (J. Gani, transl.), Volume 1, Gordon and Breach, New York, 443 pp.Google Scholar
  14. Bruland, K. W., 1974, Pb-210 geochronology in the coastal marine environment, Ph.D. thesis, University of California, San Diego.Google Scholar
  15. Christensen, E. R., 1982, A model for radionuclides in sediments influenced by mixing and compaction, J. Geophys. Res. 87: 566 - 572.CrossRefGoogle Scholar
  16. Cochran, J. K., 1980, The flux of Ra-226 from deep-sea sediments, Earth Planet. Sci. Lett. 49: 381 - 392.CrossRefGoogle Scholar
  17. Cochran, J. K., and Aller, R. C., 1980, Particle reworking in sediments from the New York Bight apex—Evidence from the Th-234–U-238 disequilibrium, Estuarine Coastal Mar. Sci. 9: 739.Google Scholar
  18. Cochran, J. K., and Krishnaswami, S., 1980, Radium, thorium, uranium, and 210Pb in deep-sea sediments and sediment pore waters from the north equatorial Pacific, Am. J. Sci. 280: 849 - 889.CrossRefGoogle Scholar
  19. Davis, R. B., 1974, Stratigraphic effects of tubificids in profundal lake sediments, Limnol. Oceanogr. 19: 466 - 488.Google Scholar
  20. Davison, C., 1891, On the amount of sand brought up by Lobworms to the surface, Geol. Mag. 8: 489 - 493.Google Scholar
  21. Demaster, D. J., Nittrouer, C. A., Cutshall, N. H., Larsen, I. L., and Dion, E. P., 1980, Short lived radionuclide profiles and inventories from Amazon continental shelf sediments, Eos 61: 1004.Google Scholar
  22. Duursma, E. K., and Gross, M. G., 1971, Marine sediments and radioactivity, in: Radioactivity in the Marine Environment (Committee on Oceanography, National Research Council), pp. 147 - 160, National Academy of Sciences, Washington, D.C.Google Scholar
  23. Filipek, L. H., and Owen, R. M., 1980, Early diagenesis of organic carbon and sulfur in outer shelf sediments from the Gulf of Mexico, Am. J. Sci. 280: 1097 - 1112.CrossRefGoogle Scholar
  24. Fisher, J. B., 1978, Effects of tubificid oligochaetes on sediment movement and the movement of materials across the sediment—water interface, Ph.D. dissertation, Case Western Reserve University, Cleveland, Ohio, 132 pp.Google Scholar
  25. Fisher, J. B., Lick, W. J., McCall, P. L., and Robbins, J. A., 1980, Vertical mixing of lake sediments by tubificid oligochaetes, J. Geophys. Res. 85: 3997 - 4006.CrossRefGoogle Scholar
  26. Fox, D. L., Crane, S. C., and McConnaughey, B. H., 1948, A biochemical study of the marine annelid worm, Thoracophelia mucronata, J. Mar. Res. 7: 567 - 585.Google Scholar
  27. Goldberg, E. D., and Koide, M., 1962, Geochronological studies of deep sea sediments by the ionium/thorium method, Geochim. Cosmochim. Acta 26: 417 - 450.CrossRefGoogle Scholar
  28. Goldhaber, M. B., Aller, R. C., Cochran, J. K., Rosenfeld, J. K., Martens, C. S., and Berner, R. A., 1977, Sulfate reduction, diffusion and bioturbation in Long Island Sound sediments: Report of the FOAM Group, Am. J. Sci. 277: 193 - 237.CrossRefGoogle Scholar
  29. Gordon, D. C., Jr., 1966, The effects of the deposit feeding polychaete Pectinaria gouldii on the intertidal sediments of Barnstable Harbor, Limnol. Oceanogr. 11: 327 - 332.Google Scholar
  30. Goreau, T. J., 1977, Quantitive effects of sediment mixing on stratigraphy and biogeochem-istry: A signal theory approach, Nature 265: 525 - 526.CrossRefGoogle Scholar
  31. Guinasso, N. L., and Schink, D. R., 1975, Quantitative estimates of biological mixing rates in abyssal sediments, J. Geophys. Res. 80: 3032 - 3043.CrossRefGoogle Scholar
  32. Grundmanis, V., and Murray, J. W., 1977, Nitrification and denitrification in marine sediments from Puget Sound, Limnol. Oceanogr. 22: 804 - 813.Google Scholar
  33. H$kanson, L., and Källström, A., 1978, An equation of state for biologically active lake sediments and its implications for interpretations of sediment data, Sedimentology 25: 205 - 226.CrossRefGoogle Scholar
  34. Hammond, D. E., and Fuller, C., 1979, The use of radon-222 as a tracer in San Francisco Bay, in: San Francisco Bay: The Urbanized Estuary ( T. J. Comomos, ed.), pp. 213 - 230, American Association for the Advancement of Science, San Francisco.Google Scholar
  35. Hammond, D. E., Simpson, H. J., and Mathieu, G., 1975, Methane and radon-222 as tracers for mechanisms of exchange across the sediment—water interface in the Hudson River Estuary, in: Marine Chemistry in the Coastal Environment (T. M. Church, ed.), pp. 119-132, American Chemical Society Symposium Series 18, American Chemical Society, Washington, D.C.Google Scholar
  36. Hanor, J. S., and Marshall, N. F., 1971, Mixing of sediment by organisms, in: Trace Fossils: A Field Guide to Selected Localities in Pennsylvanian, Permian, Cretaceous, and Tertiary Rocks (B. F. Perkins, ed.), pp. 127-135, School of Geoscience Miscellaneous Publication 71 - 1, Louisiana State University, Baton Rouge.Google Scholar
  37. Imboden, D. M., and Stiller, M., 1982, The influence of radon diffusion on the Pb-210 distribution in sediments, J. Geophys. Res. 87: 557 - 565.CrossRefGoogle Scholar
  38. Jumars, P. A., Nowell, A. R. M., and Self, R. F. L., 1981, A simple model of flow—sediment—organism interaction, in: Sedimentary Dynamics of Continental Shelves (C. A. Nittrouer, ed.), Mar. Geol. 42: 155 - 172.CrossRefGoogle Scholar
  39. Kadko, D., 1980a, 230Th, 226Ra, and 222Rn in abyssal sediments, Earth Planet. Sci. Lett. 49: 360-380.Google Scholar
  40. Kadko, D., 1980b, A detailed study of some uranium series nuclides at an abyssal hill area near the East Pacific Rise at 8°45’N, Earth Planet. Sci. Lett. 51: 115 - 131.Google Scholar
  41. Kemeny, L. G., and Snell, J. L., 1960, Finite Markov Chains, D. Van Nostrand, Princeton, New Jersey, 210 pp.Google Scholar
  42. Kowal, N. E., 1971, A rationale for modeling dynamic ecological systems, in: Systems Analysis and Simulation in Ecology ( B. C. Patten, ed.), pp. 123 - 194, Academic Press, New York.Google Scholar
  43. Krishnaswami, S., Benninger, L. K., Aller, R. C., and Van Damm, K. L., 1980, Atomospherically-derived radionuclides as tracers of sediment mixing and accumulation in near-shore marine and lake sediments: Evidence from „Be, 210Pb, and 239’2“Pu, Earth Planet. Sci. Lett. 47: 307-318.Google Scholar
  44. Levinton, J. S., and Lopez, G. R., 1977, A model of renewable resources and limitation of deposit-feeding benthic populations, Oecologia (Berlin) 31: 177 - 190.CrossRefGoogle Scholar
  45. McCaffrey, R. J., Meyers, A. C. Davey, E., Morrison, G., Bender, M., Luedtke, N., Cullen, D., Froelich, P., and Klinkhammer, G., 1980, The relation between pore water chemistry and benthic fluxes of nutrients and manganese in Narragansett Bay, Rhode Island, Limnol. Oceanogr. 25: 31 - 44.Google Scholar
  46. McCall, P. L., 1977, Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound, J. Mar. Res. 38: 221 - 266.Google Scholar
  47. McCall, P. L., and Fisher, J. B., 1980, Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments, in: Aquatic Oligochaete Biology ( R. O. Brinkhurst and D. G. Cook, eds.), pp. 253 - 317, Plenum Press, New York.CrossRefGoogle Scholar
  48. McCall, P. L., Tevesz, M. J. S., and Schwelgien, S. F., 1979, Sediment mixing by Lampsilis radiata siliquoidea (Mollusca) from Western Lake Erie, J. Great Lakes Res. 5: 105 - 111.Google Scholar
  49. Marzolf, G. R., 1965, Substrate relations of the burrowing amphipod Pontoporeia affinis in Lake Michigan, Ecology 46: 579.CrossRefGoogle Scholar
  50. Nowell, A. R. M., Jumars, P. A., and Eckman, J. E., 1981, Effects of biological activity on the entrainment of marine sediments, in: Sedimentary Dynamics of Continental Shelves (C. A. Nittrouer, ed.), Mar. Geol. 42: 133 - 153.CrossRefGoogle Scholar
  51. Nozaki, Y., Cochran, J. K., Turekian, K. K., and Keller, G., 1977, Radiocarbon and 210Pb distribution in submersible-taken deep sea cores from Project Famous, Earth Planet. Sci. Lett. 34: 167 - 173.Google Scholar
  52. Olsen, C. R., Simpson, H. J., Peng, T.-H., Bopp, R. F., and Trier, R. M., 1981, Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments, J. Geophys. Res. 86: 11020 - 11028.CrossRefGoogle Scholar
  53. Peng, T.-H., Broecker, W. S., Kipphut, G., and Shackleton, N., 1977, Benthic mixing in deep sea cores as determined by 14C dating and its implications regarding climate stratigraphy and the fate of fossil fuel CO2, in: The Fate of Fossil Fuel CO 2 in the Oceans ( N. R. Andersen and A. Malahoff, eds.), pp. 355 - 373, Plenum Press, New York.Google Scholar
  54. Peng, T.-H., Broecker, W. S., and Berger, W. H., 1979, Rates of benthic mixing in deep-sea sediment as determined by radioactive tracers, Quat. Res. 11: 141-149.Google Scholar
  55. Piper, D. J. W., and Marshall, N. F., 1969, Bioturbation of Holocene sediments on La Jolla Deep Sea Fan, California, J. Sediment. Petrol. 39: 601 - 606.Google Scholar
  56. Rhoads, D. C., 1963, Rates of sediment reworking by Yoldia limatula in Buzzards Bay, Massachusetts and Long Island Sound, J. Sediment. Petrol. 33: 723 - 727.Google Scholar
  57. Rhoads, D. C., 1974, Organism—sediment relations on the muddy sea floor, Oceanogr. Mar. Biol. Annu. Rev. 12: 263-300.Google Scholar
  58. Robbins, J. A., 1978, Geochemical and geophysical applications of radioactive lead, in: Biogeochemistry of Lead in the Environment ( J. O. Nriagu, ed.), pp. 285 - 393, Elsevier, Amsterdam.Google Scholar
  59. Robbins, J. A., Krezoski, J. R., and Mozley, S. C., 1977, Radioactivity in sediments of the Great Lakes: Post-depositional redistribution by deposit-feeding organisms, Earth Planet. Sci. Lett. 36: 325 - 333.Google Scholar
  60. Robbins, J. A., McCall, P. L., Fisher, J. B., and Krezoski, J. R., 1979, Effect of deposit feeders on migration of 137Cs in lake sediments, Earth Planet. Sci. Lett. 42: 277 - 287.Google Scholar
  61. Rowe, G. T., Palloni, P. T., and Homer, S. G., 1974, Benthic biomass estimates from the northwestern Atlantic Ocean and the Northern Gulf of Mexico, Deep Sea Res. 21: 641 - 650.Google Scholar
  62. Ruddiman, W. F., and Glover, L. K., 1972, Vertical mixing of ice-rafted volcanic ash in North Atlantic sediments, Bull. Geol. Soc. Am. 83: 2817 - 2836.CrossRefGoogle Scholar
  63. Santchi, P. H., Li, Y.-H., Bell, J. J., Trier, R. M., and Kawtaluk, K., 1980, Pu in coastal marine environments, Earth Planet. Sci. Lett. 51: 248 - 265.Google Scholar
  64. Schink, D. R., and Guinasso, N. L., Jr., 1977, Modelling the influence of bioturbation and other processes on calcium carbonate dissolution at the sea floor, in: The Fate of Fossil Fuel CO2 in the Oceans ( N. R. Andersen and A. Malahoff, eds.), pp. 375 - 398, Plenum Press, New York.Google Scholar
  65. Schink, D. R., and Guinasso, N. L., 1978, Redistribution of dissolved and adsorbed materials in abyssal marine sediments undergoing biological stirring, Am. J. Sci. 278: 687 - 702.CrossRefGoogle Scholar
  66. Schink, D. R., and Guinasso, N. L., 1982, Processes affecting silica at the abyssal sediment–water interface, in: Actes des Colloques du C.N.R.S.: Biogeochimie de la Matière Organique à l’Interface Eau–Sediment Marin (R. Daumas, ed.) (in press).Google Scholar
  67. Schink, D. R., Guinasso, N. L., Jr., and Fanning, K. A., 1975, Processes affecting the concentration of silica at the sediment–water interface of the Atlantic Ocean, J. Geophys. Res. 80: 3013 - 3031.CrossRefGoogle Scholar
  68. Shokes, R. F., 1976, Rate-dependent distributions of lead-210 and interstitial sulfate in sediments of the Mississippi River delta, Ph.D. thesis, Texas A000000M University, College Station, Texas.Google Scholar
  69. Smethie, W. M., Jr., Nittrouer, C. A., and Self, R. F. L., 1981, The use of radon-222 as a tracer of sediment irrigation and mixing on the Washington continental shelf, in: Sedimentary Dynamics of Continental Shelves (C. A. Nittrouer, ed.), Mar. Geol. 42: 173 - 200.CrossRefGoogle Scholar
  70. Spencer, D. W., 1975, Distribution of lead-210 and polonium-210 between soluble and particulate phases in seawater, USAEC Report, COD-3566-11, Woods Hole Oceanographic Institute, Woods Holes, Massachusetts, 105 pp.Google Scholar
  71. Sundquist, E., Richardson, D. K., Broecker, W. S., and Peng, T.-H., 1977, Sediment mixing and carbonate dissolution in the southeast Pacific Ocean, in: The Fate of Fossil Fuel CO2 in the Oceans ( N. R. Andersen and A. Malahoff, eds.), pp. 429 - 454, Plenum Press, New York.Google Scholar
  72. Turekian, K. K., Cochran, J. K., and DeMaster, D. J., 1978, Bioturbation in deep sea deposits: Rates and consequences, Oceanus 21: 34 - 41.Google Scholar
  73. United States Army Corps of Engineers, 1975, Lake Erie wastewater management study: Preliminary feasibility report, Corps of Engineers, Buffalo District, Buffalo, New York.Google Scholar
  74. Vanderborght, J. P., Wollast, R., and Billen, G., 1977, Kinetic models of diagenesis in disturbed sediments. Part 1. Mass transfer properties and silica diagenesis, Limnol. Oceanogr. 22: 787 - 793.Google Scholar
  75. Wong, G. T. F., and Grosch, C. E., 1978, A mathematical model for the distribution of dissolved silicon in interstitial waters—An analytical approach, J. Mar. Res. 36: 735 - 750.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Gerald Matisoff
    • 1
  1. 1.Department of Geological SciencesCase Western Reserve UniversityClevelandUSA

Personalised recommendations