The Effects of Marine Benthos on Physical Properties of Sediments

A Successional Perspective
  • Donald C. Rhoads
  • Larry F. Boyer
Part of the Topics in Geobiology book series (TGBI, volume 100)

Abstract

The effects of benthic organisms on the physical properties of granular substrata are well documented. The range of effects has been presented in H. B. Moore (1931, 1939), Schwartz (1932), Dapples (1942), D. G. Moore and Scruton (1957), McMaster (1967), Rhoads (1974), Rowe (1974), Powell (1974), Richards and Park (1976), Myers (1977a,b), Self and Jumars (1978), Lee and Swartz (1980), and Carney (1981). These papers relate the effects of benthic species to changes in grain size, sorting, fabric, water content, compaction, shear strength, and bottom stability. Those autecologic parameters that appear to be most highly correlated with physical modifications of sediments include: method of feeding, feeding selectivity, feeding level relative to the sediment—water interface, degree of mobility, organism size and population density, burrowing depth, and, if the organism is a tube dweller, the density, spacing, and length of tubes.

Keywords

Shear Strength Fecal Pellet Roughness Element Geotechnical Property Undrained Shear Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aller, R. C., 1977, The influence of macrobenthos on chemical diagenesis of marine sediments, Ph.D. dissertation, Department of Geology and Geophysics, Yale University, New Haven, Connecticut.Google Scholar
  2. Aller, R. C., 1978, Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry, Am. J. Sci. 217: 1185–1234.Google Scholar
  3. Aller, R. C., 1980, Relationships of tube-dwelling benthos with sediment and overlying water chemistry, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 285–308, University of South Carolina Press, Columbia.Google Scholar
  4. Aller, R. C., and Cochran, J. K., 1976, 234Th/238U disequilibrium in nearshore sediment: Particle reworking and diagenetic time scales, Earth Planet. Sci. Lett. 20: 37–50.Google Scholar
  5. Aller, R. C., and Dodge, R. E., 1974, Animal—sediment relations in a tropical lagoon, Dis- covery Bay, Jamaica, J. Mar. Res. 32: 209–232.Google Scholar
  6. Aller, R. C., and Yingst, J. Y., 1978, Biogeochemistry of tube-dwellings: A study of the sedentary polychaete Amphitrite ornata (Leidy), J. Mar. Res. 36: 201–254.Google Scholar
  7. Aller, R. C., and Yingst, J. Y., 1980, Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, U.S.A., Mar. Biol. 56: 29–42.Google Scholar
  8. Aller, R. C., Benninger, L. K., and Cochran, J. K., 1980, Tracking particle associated processes in nearshore environments by use of 234Th/238U disequilibrium, Earth. Planet. Sci. Lett. 47: 161–175.Google Scholar
  9. Aspiras, R. B., Allen, O. N., Harris, R. F., and Chesters, G., 1971, The role of micro-organisms in the stabilization of soil aggregates, Soil Biol. Biochem. 3: 347–353.Google Scholar
  10. Atkinson, R. J. A., and Pullin, R. S. V., 1976, The red band-fish, Cepola rubescens L. at Lundy, Rep. Lundy Fld. Soc. 27: 1–6.Google Scholar
  11. Baier, R. E., 1973, Influence of the initial surface condition of materials in bioadhesion, in: Proceedings of the Third International Congress on Corrosion and Fouling ( R. F. Acker, B. F. Brown, J. R. DePalma, and W. D. Iverson, eds.), pp. 633–639, National Bureau of Standards, Washington, D.C.Google Scholar
  12. Bailey-Brock, J. H., 1979, Sediment trapping by chaetopterid polychaetes on a Hawaiian fringing reef, J. Mar. Res. 37: 643–656.Google Scholar
  13. Bell, S. S., and Coull, B. C., 1980, Experimental evidence for a model of juvenile macrofauna—meiofauna interactions, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 179–192, University of South Carolina Press, Columbia.Google Scholar
  14. Berger, W. H., and Heath, G. R., 1968, Vertical mixing in pelagic sediments, J. Mar. Res. 26: 134–143.Google Scholar
  15. Bokuniewicz, H. J., Gordon, R. B., and Rhoads, D. C., 1975, Mechanical properties of the sediment—water interface, Mar. Geol. 18: 263–278.Google Scholar
  16. Boswell, P. G. H., 1961, Muddy Sediments: Some Geotechnical Studies for Geologists, Engineers, and Soil Scientists, Heffer, Cambridge.Google Scholar
  17. Bosworth, W. S., Germano, J., Hartzband, D. J., McCusker, A. J., and Rhoads, D. C., 1980, Use of benthic sediment-profile photography in dredging impact analysis and monitoring, Ninth World Dredging Conference, 29–31 October, 1980, Vancouver, British Columbia, Canada.Google Scholar
  18. Boyer, L. F., 1980, Production and preservation of surface traces in the intertidal zone, Ph.D. dissertation, Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois.Google Scholar
  19. Cadee, G. C., 1979, Sediment reworking by the polychaete Heteromastus filiformis on a tidal flat in the Dutch Wadden Sea, Neth. J. Sea Res. 13: 441–456.Google Scholar
  20. Carney, R. S., 1981, Bioturbation and biodeposition, in: Principles of Benthic Marine Paleoecology ( A. J. Boucot, ed.), pp. 357–400, Academic Press, New York.Google Scholar
  21. Chapman, G. A., 1949, The thixotropy and dilatancy of a marine soil, J. Mar. Biol. Assoc. U.K. 28: 123–140.Google Scholar
  22. Chapman, G. A., and Newell, G. E., 1947, The role of the body-fluid in relation to movement in soft bodied invertebrates. i. The burrowing of Arenicola, Proc. R. Soc. London Ser. 134: 431–455.Google Scholar
  23. Clark, R. B., 1964, Dynamics of Metazoan Evolution, Clarendon Press, Oxford, 313 pp. Clements, F. E., 1916, Plant succession: An analysis of the development of vegetation, Carnegie Institute, Washington, Publication 242, 512 pp.Google Scholar
  24. Cool, D. O., 1971, Depressions in shallow marine sediments made by benthic fishes, J. Sediment. Petrol. 41: 577–578.Google Scholar
  25. Crozier, W., 1918, The amount of bottom material ingested by holothurians (Stichopus), J. Exp. Zool. 26: 379–389.Google Scholar
  26. Cullen, D. J., 1973, Bioturbation of superficial marine sediments by interstitial meiobenthos, Nature 242: 323–324.Google Scholar
  27. Dapples, E. C., 1942, The effect of macro-organisms upon near shore marine sediments, J. Sediment. Petrol. 12: 118–126.Google Scholar
  28. Dauer, D. M., and Simon, J. L., 1975, Repopulation of the polychaete fauna of an intertidal habitat following natural defaunation: Species equilibrium, Oecologia (Berlin) 22: 99–117.Google Scholar
  29. Dayton, P. K., and Oliver, J. S., 1980, An evaluation of experimental analyses of population and community patterns in benthic marine environments, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 93–120, University of South Carolina Press, Columbia.Google Scholar
  30. Eckman, J. E., 1979, Small-scale patterns and processes in a soft substratum, intertidal community, J. Mar. Res. 37: 437–457.Google Scholar
  31. Eckman, J. E., Nowell, A. R. M., and Jumars, P. A., 1979, The influence of animal motility on sediment entrainment, Eos 60: 847 (abs.).Google Scholar
  32. Eckman, J. E., Nowell, A. R. M., and Jumars, P. A., 1981, Sediment destabilization by animal tubes, J. Mar. Res. 39: 361–374.Google Scholar
  33. Einsele, G., Overbeck, R., Schwarz, H. U., and Unsold, G., 1974, Mass physical properties, sliding and erodibility of experimentally deposited and differently consolidated clayey muds, Sedimentology 21: 339–372.Google Scholar
  34. Einstein, H. R., and Krone, R. B., 1962, Experiments to determine modes of cohesive sediment transport in salt water, J. Geophys. Res. 67: 1451–1461.Google Scholar
  35. Fager, E. W., 1964, Marine sediments; effects of a tube-building polychaete, Science 143: 356–359.Google Scholar
  36. Featherstone, R. P., and Risk, M. J., 1977, Effects of tube-building polychaetes on intertidal sediments of the Minas Basin, Bay of Fundy, J. Sediment. Petrol. 47: 446–450.Google Scholar
  37. Fenchel, T., 1970, Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinium, Limnol. Oceanogr. 15: 14–20.Google Scholar
  38. Frankel, L., and Meade, D. J., 1973, Mucilaginous matrix of some estuarine sands of Connecticut, J. Sediment. Petrol. 43: 1090–1095.Google Scholar
  39. Frankenberg, D., and Smith, K. L., Jr., 1967, Coprophagy in marine animals, Limnol. Oceanogr. 12: 443–450.Google Scholar
  40. Frey, R. W. (ed.), 1975, The Study of Trace Fossils, Springer-Verlag, New York.Google Scholar
  41. Ginsburg, R. N., and Lowenstam, H. A., 1958, The influence of marine bottom communities on the depositional environment of sediments, J. Geol. 66: 310–318.Google Scholar
  42. Goldhaber, M. B., Aller, R. C., Cochran, J. K., Rosenfeld, J. K., Martens, C. S., and Berner, R. A., 1977, Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: Report of the FOAM group, Am. J. Sci. 277: 193–237.Google Scholar
  43. Gordon, D. C., Jr., 1966, The effects of the deposit feeding polychaete Pectinaria gouldii on the intertidal sediments of Barnstable Harbor, Limnol. Oceanogr. 11: 327–332.Google Scholar
  44. Goupil, D. W., DePalma, V. A., and Baier, R. E., 1973, Prospects for non-toxic fouling-resistant paints, in: Proceedings of the 9th Marine Technology Society Conference, pp. 445–458, Marine Technology Society, Washington, D.C.Google Scholar
  45. Grant, W. D., Boyer, L. F., and Sanford, L. P., 1982, The effect of biological processes on the initiation of sediment motion in non-cohesive sediment, J. Mar. Res. 40: (in press).Google Scholar
  46. Gray, J. S., 1974, Animal—sediment relationships, Oceanogr. Mar. Biol. Annu. Rev. 12: 223–261.Google Scholar
  47. Gularte, R. C., 1978, The erosion of cohesive marine sediments as a rate process, Ph.D. dissertation, University of Rhode Island, Kingston, Rhode Island.Google Scholar
  48. Gularte, R. C., Kelley, W. E., and Nacci, V. A., 1980, Erosion of cohesive sediments as a rate process, Ocean Eng. 7: 539–551.Google Scholar
  49. Hanor, J. S., and Marshall, N. F., 1971, Mixing of sediment by organisms, in: Trace Fossils: A Field Guide to Selected Localities in Pennsylvanian, Permian, Cretaceous, and Tertiary Rocks of Texas and Related Papers (B. F. Perkins, ed.), pp. 127–135, Louisiana State University Press, Miscellaneous Publication 71–1, Baton Rouge.Google Scholar
  50. Hargrave, B. T., 1976, The central role of invertebrate faeces in sediment decomposition, in: The role of Terrestrial and Aquatic Organisms in Decomposition Processes ( J. M. Andersen and A. Macfadyen, eds.), pp. 301–321, Blackwell, Oxford.Google Scholar
  51. Hargrave, B. T., 1980, Factors affecting the flux of organic matter to sediments in a marine bay, in: Marine Benthic Dynamics K. R. Tenore and B. C. Coull, eds.), pp. 243–264, University of South Carolina Press, Columbia.Google Scholar
  52. Harris, R. F., Chesters, G., and Allen, O. N., 1966, Dynamics of soil aggregation, Adv. Agron. 18: 107–169.Google Scholar
  53. Harrison, W., and Wass, M. L., 1965, Frequencies of infaunal invertebrates related to water content of Chesapeake Bay sediments, Southeast. Geol. 6: 177–187.Google Scholar
  54. Harrison, W., Lynch, M. P., and Altschaefel, A. G., 1964, Sediments of lower Chesapeake Bay with emphasis on mass properties, J. Sediment. Petrol. 34: 727–755.Google Scholar
  55. Haven, D. S., and Morales-Alamo, R., 1966, Aspects of biodeposition by oysters and other invertebrate filter feeders, Limnol. Oceanogr. 11: 487–498.Google Scholar
  56. Haven, D. S., and Morales-Alamo, R., 1972, Biodeposition as a factor in sedimentation of fine suspended solids in estuaries, Geol. Soc. Am. Mem. 133: 121–130.Google Scholar
  57. Hessler, R. R., and Jumars, P. A., 1974, Abyssal community analysis from replicate box cores in the central No. Pacific, Deep Sea Res. 21: 185–209.Google Scholar
  58. Hobbie, J. E., and Lee, C., 1980, Microbial production of extracellular material: Importance in benthic ecology, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 341–346, University of South Carolina Press, Columbia.Google Scholar
  59. Holland, A. F., Zingmark, R. G., and Dean, J. M., 1974, Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms, Mar. Biol. 27: 191–196.Google Scholar
  60. Honjo, S., 1976, Coccoliths: Production, transportation and sedimentation, Mar. Micropaleontol. 1: 65–79.Google Scholar
  61. Johnson, R. G., 1971, Animal—sediment relations in shallow water benthic communities, Mar. Geol. 11: 93–104.Google Scholar
  62. Johnson, R. G., 1972, Conceptual models of benthic marine communities, in: Models in Paleobiology ( T. J. M. Schopf, ed.), pp. 149–159, Freeman and Cooper, San Francisco.Google Scholar
  63. Johnson, R. G., 1974, Particulate matter at the sediment—water interface in coastal environments, J. Mar. Res. 33: 313–330.Google Scholar
  64. Johnson, R. G., 1977, Vertical variation in particulate matter in the upper twenty centimenters of marine sediments, J. Mar. Res. 35: 273–282.Google Scholar
  65. Jumars, P. A., and Hessler, R. R., 1976, Hadal community structure: Implications from the Aleutian Trench, J. Mar. Res. 34: 547–560.Google Scholar
  66. Jumars, P. A., Nowell, A. R. M., and Self, R. L. F., 1981, A simple model of flow—sediment—organism interactions, Mar. Geol. 42: 155–172.Google Scholar
  67. Khailov, K. M., and Finenko, Z. Z., 1970, Organic macromolecular compounds dissolved in sea-water and their inclusion into food chains, in: Marine Food Chains ( J. H. Steele, ed.), pp. 6–18, University of California Press, Berkeley.Google Scholar
  68. Krank, K., 1973, Flocculation of suspended sediment in the sea, Nature 246: 348–350.Google Scholar
  69. Krank, K., 1975, Sediment deposition from flocculated suspensions, Sedimentology 22: 111–123.Google Scholar
  70. Lambe, T. W., and Whitman, R. V., 1969, Soil Mechanics, John Wiley and Sons, New York, 553 pp.Google Scholar
  71. Lee, H., II, and Swartz, R. C., 1980, Biological processes affecting the distribution of pollutants in marine bioturbation, in: Contaminants and Sediments ( R. A. Baker, ed.), Volume 2, pp. 555–605, Science Publishers, Ann Arbor, Michigan.Google Scholar
  72. Lettau, P., 1969, Note on aerodynamic roughness parameter estimation, J. Appl. Meteorol. 8: 828–832.Google Scholar
  73. Levinton, J. S., 1980, Particle feeding by deposit-feeders: Models, data, and a prospectus, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 423–441, University of South Carolina Press, Columbia.Google Scholar
  74. Levinton, J. S., and Lopez, G. R., 1977, A model of renewable resources and limitation of deposit-feeding benthic populations, Oecologia (Berlin) 31: 117–190.Google Scholar
  75. Lonsdale, P., and Southard, J. B., 1974, Experimental erosion of North Pacific red clay, Mar. Geol. 17: M51 — M60.Google Scholar
  76. Lynch, D. L., and Cotnoir, L. J., Jr., 1956, The influence of clay minerals on the breakdown of certain organic substrates, Soil Sci. Soc. Am. Proc. 20: 367–370.Google Scholar
  77. Lynch, M., and Harrison, W., 1970, Sedimentation caused by a tube-building amphipod, J. Sediment. Petrol. 40: 434–435.Google Scholar
  78. McCall, P. L., 1975, The influence of disturbance on community patterns and adaptive strategies of the infaunal benthos of central Long Island Sound, Ph.D. dissertation, Yale University, New Haven, Connecticut.Google Scholar
  79. McCall, P. L., 1977, Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound, J. Mar. Res. 35: 221–266.Google Scholar
  80. McCall, P. L., 1978, Spatial—temporal distributions of Long Island Sound infauna: The role of bottom disturbance in a nearshore marine habitat, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 191–219, Academic Press, New York.Google Scholar
  81. McCall, P. L., 1979, The effects of deposit-feeding oligochaetes on particle size and settling velocity of Lake Eerie sediments, J. Sediment. Petrol. 49: 813–818.Google Scholar
  82. McCall, P. L., and Fisher, J. B., 1980, Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments, in: Aquatic Oligochaete Biology ( R. O. Brinkhurst and D. G. Cook, eds.), pp. 253–317, Plenum Press, New York.Google Scholar
  83. MacIlvaine, J. C., and Ross, D. A., 1979, Sedimentary processes on the continental slope of New England, J. Sediment. Petrol. 49: 565–574.Google Scholar
  84. McIntosh, R. P., 1980, The relationship between succession and the recovery process in marine sediments, in: The Recovery Process in Damaged Ecosystems ( J. Cairns, Jr., ed.), pp. 11–62, Ann Arbor Scientific Publishers, Ann Arbor, Michigan.Google Scholar
  85. McMaster, R. L., 1962, Seasonal variability in compactness in marine sediments: A laboratory study, Geol. Soc. Am. Bull. 73: 643–646.Google Scholar
  86. McMaster, R. L., 1967, Compactness variability of estuarine sediments: An in situ study, in: Estuaries ( G. Lauff, ed.), pp. 261–267, American Association for the Advancement of Science, Washington, D.C.Google Scholar
  87. Madsen, O. S., and Grant, W. D., 1976, Sediment transport in the coastal environment, Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Report 209, Massachusetts Institute of Technology, Cambridge, Massachusetts, 105 pp.Google Scholar
  88. Mare, M. F., 1942, A study of the marine benthic community with special reference to the microorganisms, J. Mar. Biol. Assoc. U. K. 25: 517–554.Google Scholar
  89. Marshall, N., and Lucas, K., 1970, Preliminary observations on the properties of bottom sediments with an without eelgrass, Zostera marina, Proc. Natl. Shellfish Assoc. 60: 107–111.Google Scholar
  90. Martin, J. P., and Waksman, S. A., 1940, Influence of microorganisms on soil aggregation and erosion, Soil. Sci. 50: 29–47.Google Scholar
  91. Martins, J. P., and Craggs, B. A., 1946, Influence of temperature and moisture on the soil-aggregating effect of organic residues, J. Am. Soc. Agron. 38: 322–339.Google Scholar
  92. Migniot, C., 1968, Etude des propriétés physiques de différents sediments très fins et de leur comportement sous des actions hydrodynamiques, La Houille Blanche 23: 591–620.Google Scholar
  93. Miller, M. C., McCave, I. N., and Komar, P. D., 1977, Threshold of sediment motion under unidirectional currents, Sedimentology 24: 507–527.Google Scholar
  94. Mills, E. L., 1967, The biology of an ampeliscid amphipod crustacean sibling species pair, J. Fish. Res. Board Can. 24: 305–355.Google Scholar
  95. Mills, E. L., 1969, The community concept in marine zoology, with comments on continua and instability in some marine communities: A review, J. Fish. Res. Board Can. 26: 1415–1428.Google Scholar
  96. Mitchell, R., and Nevo, Z., 1964, Effects of bacterial polysaccharide accumulation on infiltration of water through sand, Appl. Microbiol. 12: 219–223.Google Scholar
  97. Moore, D. G., and Scruton, P. C., 1957, Minor internal structure of some recent unconsolidated sediments, Bull. Am. Assoc. Petrol. Geol. 41: 2723–2751.Google Scholar
  98. Moore, H. B., 1931, The muds of the Clyde Sea area. III. Chemical and physical conditions; rate and nature of sedimentation; and fauna, J. Mar. Biol. Assoc. U. K. 17: 325–358.Google Scholar
  99. Moore, H. B., 1939, Faecal pellets in relation to marine deposits, in: Recent Marine Sediments ( P. Trask, ed.), pp. 516–523, American Association of Petroleum Geologists/Dover Press, New York.Google Scholar
  100. Morris, H. M., 1955, A new concept of flow in rough conduits, Trans. Am. Soc. Civ. Eng. 120: 373–398.Google Scholar
  101. Myers, A. C., 1977a, Sediment processing in a marine subtidal sandy bottom community. I. Physical aspects, J. Mar. Res. 35: 609–632.Google Scholar
  102. Myers, A. C., 1977b, Sediment processing in a marine subtidal sandy bottom community. II. Biological consequences, J. Mar. Res. 35: 633–647.Google Scholar
  103. Myers, A. C., 1979, Summer and winter burrows of a mantis shrimp, Squilla empusa, in Narragansett Bay, Rhode Island (U.S.A.), Estuarine Coastal, Mar. Sci. 8: 87–98.Google Scholar
  104. Neihof, R. A., and Loeb, G. I., 1972, The surface charge of particulate matter in seawater, Limnol. Oceanorgr. 17: 7–16.Google Scholar
  105. Neihof, R. A., and Loeb, G. I., 1973, Molecular fouling surfaces in seawater, in: Proceedings of the Third International Congress on Marine Corrosion and Fouling ( R. F. Aker, B. F. Brown, J. R. dePalma, and W. P. Iverson, eds.), pp. 710–718, National Bureau of Standards, Gaithersburg, Virginia.Google Scholar
  106. Neuman, A. C., Gebelein, C. P., and Scoffin, T. P., 1970, The composition, structure, and erodibility of subtidal mats, Abaco, Bahamas, J. Sediment. Petrol. 40: 274–297.Google Scholar
  107. Nicol, J. A. C., 1967, The Biology of Marine Animals, John Wiley and Sons, New York.Google Scholar
  108. Nixon, S. W., Kelly, J. R., Fumas, B. N., Oviatt, C. A., and Hale, S. S., 1980, Phosphorus regeneration and the metabolism of coastal marine bottom communities, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull eds.), pp. 219–242, University of South Carolina Press, Columbia.Google Scholar
  109. Nowell, A. R. M., and Church, M., 1979, Turbulent flow in a depth-limited boundary layer, J. Geophys. Res. 84: 4816–4824.Google Scholar
  110. Nowell, A. R. M., Jumars, P. A., and Eckman, J. E., 1981, Effects of biological activity on the entrainment of marine sediments, Mar. Geol. 42: 133–153.Google Scholar
  111. Orr, M., and Rhoads, D. C., 1982, Acoustic imaging of structures and macrofauna in the upper 10 cm of sediments using a megahertz backscattering system, Mar. Geol. (in press).Google Scholar
  112. Osman, R. W., and Whitlatch, R. B., 1978, Patterns of species diversity: Fact or artifact? Paleobiology 4: 41–54.Google Scholar
  113. Partheniades, E., 1965, Erosion and deposition of cohesive soils, Proc. Am. Soc. Civ. Eng., J. Hydraul. Div. 91: 105–139.Google Scholar
  114. Parthenaides, E., and Paswell, R. E., 1970, Erodibility of channels with cohesive boundary, Proc. Am. Soc. Civ. Eng., J. Hydraul. Div. 96: 755–771.Google Scholar
  115. Pearson, T. H., and Rosenberg, R., 1978, Macrobenthic succession in relation to organic enrichment and pollution of the marine environment, Oceanogr. Mar. Biol. Annu. Rev. 16: 229–311.Google Scholar
  116. Pearson, T. H., and Stanley, S. O., 1979, Comparative measurement of the redox potential of marine sediments as a rapid means of assessing the effect of organic pollution, Mar. Biol. 53: 371–379.Google Scholar
  117. Pemberton, G. S., Risk, M. J., and Buckley, D. E., 1976, Supershrimp: Deep bioturbation in the strait of Canso, Nova Scotia, Science 192: 790–791.Google Scholar
  118. Petersen, C. G. J., 1913, Valuation of the sea. II. The animal communities of the sea bottom and their importance for marine zoogeography, Rep. Danish Biol. Stat. 21: 1–44.Google Scholar
  119. Phelps, D. K., 1966, Partitioning of the stable elements, Fe, Zn, Se, Sm, within a benthic community, Anasco Bay, Puerto Rico, in: Radioecological Concentration Processes ( B. Aberg and F. P. Hungate, eds.), pp. 721–734, Pergamon Press, New York.Google Scholar
  120. Pinck, L. A., Dyal, R. S., and Allison, F. E., 1954, Protein—montmorillonite complexes, their preparation and the effects of soil micro-organisms on their decomposition, Soil Sci. 78: 109–118.Google Scholar
  121. Postma, H., 1967, Sediment transport environment, in: Estuaries ( G. H. Lauff, ed.), pp. 158–179, American Association for the Advancement of Science, Washington, D.C.Google Scholar
  122. Powell, E. N., 1977, Particle size selection and sediment reworking in a funnel feeder, Leptosynapta tenuis (Holothuroidea, Synoptidae), Int. Rev. Ges. Hydrobiol. 62: 385–403.Google Scholar
  123. Propp, M. V., Tarasoff, V. G., Cherbadgi, I. I., and Lootnik, N. V., 1980, Benthic—pelagic oxygen and nutrient exchange in a coastal region of the Sea of Japan, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 265–284, University of South Carolina Press, Columbia.Google Scholar
  124. Purdy, E., 1964, Sediments as substrates, in: Approaches to Paleoecology ( J. Imbrie and N. Newell, eds.), pp. 238–271, John Wiley and Sons, New York.Google Scholar
  125. Raupach, T., 1981, A wind tunnel study of turbulent flow close to regularly arrayed rough surfaces, Boundary Layer Meteorol. 18: 373–397.Google Scholar
  126. Revsbech, N. P., Jorgensen, B. B., and Blackburn, T. H., 1979, Oxygen in the sea bottom measured with a microelectrode, Science 207: 1355–1356.Google Scholar
  127. Rhoads, D. C., 1963, Rates of sediment reworking by Yoldia limatula in Buzzards Bay, Massachusetts and Long Island Sound, J. Sediment. Petrol. 33: 723–727.Google Scholar
  128. Rhoads, D. C., 1967, Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts, J. Geol. 75: 461–476.Google Scholar
  129. Rhoads, D. C., 1970, Mass properties, stability and ecology of marine muds related to burrowing activity, in: Trace Fossils ( T. P. Crimes and J. C. Harper, eds.), pp. 391–406, Seel House Press, Liverpool.Google Scholar
  130. Rhoads, D. C., 1973, The influence of deposit-feeding benthos on water turbidity and nutrient recycling, Am. J. Sci. 273: 1–22.Google Scholar
  131. Rhoads, D. C., 1974, Organism—sediment relations on the muddy sea floor, Oceanogr. Mar. Biol. Annu. Rev. 12: 263–300.Google Scholar
  132. Rhoads, D. C., and Boyer, L. F., 1983, Seasonal patterns in sediment resuspension in central Long Island Sound, U.S.A., (in preparation).Google Scholar
  133. Rhoads, D. C., and Cande, S., 1971, Sediment profile camera for in situ study of organism—sediment relations, Limnol. Oceanogr. 16: 110–114.Google Scholar
  134. Rhoads, D. C., and Germano, J., 1982, Characterization of benthic processes using sediment-profile imaging: An efficient method of Remote Ecological Monitoring of the seafloor (REMOTS system), Mar. Ecol. Prog. Ser. (in press).Google Scholar
  135. Rhoads, D. C., and Stanley, D. J., 1964, Biogenic graded bedding, J. Sediment. Petrol. 35: 956–963.Google Scholar
  136. Rhoads, D. C., and Young, D. K., 1970, The influence of deposit-feeding organisms on sediment stability and community trophic structure, J. Mar. Res. 28: 150–178.Google Scholar
  137. Rhoads, D. C., and Young, D. K., 1971, Animal—sediment relations in Cape Cod Bay, Massachusetts. II. Reworking by Molpadia oolitica (Holothuroidea), Mar. Biol. 11: 255261.Google Scholar
  138. Rhoads, D. C., Aller, R. C., and Goldhaber, M., 1977, The influence of colonizing macro-benthos on physical properties and chemical diagenesis of the estuarine seafloor, in: Ecology of Marine Benthos ( B. C. Coull, ed.), pp. 113–138, University of South Carolina Press, Columbia.Google Scholar
  139. Rhoads, D. C., McCall, P. L., and Yingst, J. Y., 1978a, Disturbance and production on the estuarine seafloor, Am. Sci. 66: 577–586.Google Scholar
  140. Rhoads, D. C., Yingst, J. Y., and Ullman, W., 1978b, Seafloor stability in central Long Island Sound. Part I. Temporal changes in erodibility of fine-grained sediment, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 221–224, Academic Press, New York.Google Scholar
  141. Rhoads, D. C., Germano, J., and Boyer, L. F., 1981, Sediment-profile imaging: An efficient method of Remote Ecological Monitoring of the Seafloor (REMOTS system), Oceans 1:561–566Google Scholar
  142. Publication No. 81CH1685–7, IEEE, Piscataway, New Jersey.Google Scholar
  143. Richards, A. F., and Parks, J. M., 1976, Marine geotechnology: Average sediment properties, selected literature and review of consolidation, stability and bioturbation—geotechnical interactions in the benthic boundary layer, in: The Benthic Boundary Layer ( I. N. McCave, ed.), pp. 157–181, Plenum Press, New York.Google Scholar
  144. Richardson, M. D., and Young D. K., 1981, Geoacoustic models and bioturbation, Mar. Geol. 38: 205–218.Google Scholar
  145. Riley, G. A., 1963, Organic aggregates in seawater and the dynamics of their formation and utilization, Limnol. Oceanogr. 8: 372–381.Google Scholar
  146. Risk, M. J., and Moffat, J. S., 1977, Sedimentological significance of fecal pellets of Macoma baltica in the Minas Basin, Bay of Fundy, J. Sediment. Petrol. 47: 1425–1436.Google Scholar
  147. Rowe, G. T., 1974, The effects of the benthic fauna on the physical properties of deep-sea sediments, in: Deep-Sea Sediments: Physical and Mechanical Properties ( A. L. Inderbitzen, ed.), pp. 381–400, Plenum Press, New York.Google Scholar
  148. Sanders, H. L., 1958, Benthic studies in Buzzards, Bay. I. Animal—sediment relationships, Limnol. Oceanogr. 3: 245–258.Google Scholar
  149. Sanders, H. L., Goudsmit, E. L., Mills, E. L., and Hampson, G. E., 1962, A study of the intertidal fauna of Barnstable Harbor, Massachusetts, Limnol. Oceanogr. 7: 63–70.Google Scholar
  150. Santos, S. L., and Bloom, S. A., 1980, Stability in an annually defaunated estuarine soft- bottom community, Oecologia (Berlin) 46: 290–294.Google Scholar
  151. Santos, S. L., and Simon, J. L., 1980, Marine soft-bottom community establishment following annual defaunation: Larval or adult recruitment? Mar. Ecol. Prog. Ser. 2: 235–241.Google Scholar
  152. Sayre, W. W., and Albertson, M. L., 1963, Roughness spacing in rigid open channels, Trans. Am. Soc. Civ. Eng. 128: 343–372.Google Scholar
  153. Schafer, W., 1972, Ecology and Paleoecology of Marine Environments ( I. Oertel and G. Y. Craig, translators), University of Chicago Press, Chicago, Illinois.Google Scholar
  154. Schlichting, H., 1936, Experimentelle Untersuchungen zum Rauhigkeitsproblem, Ing. Arch. 7: 1–34.Google Scholar
  155. Schwartz, A., 1932, Der tierische Einfluss auf die Meeressedimente, Senckenbergiana 14: 118–172.Google Scholar
  156. Scoffin, T. P., 1970, The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas, J. Sediment. Petrol. 40: 249–273.Google Scholar
  157. Self, R. F. L., and Jumars, P. A., 1978, New resource axes for deposit feeders, J. Mar. Res. 36: 627–641.Google Scholar
  158. Sepkoski, J. J., 1982, Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna, in: Cyclic and Event Stratification (G. Einsele and A. Seilacher, eds.), Springer-Verlag, New York (in press).Google Scholar
  159. Shields, A., 1936, Application of similarity principles and turbulent research to bed-load movement (Mitteilungen der Preussicher Versuchsanstalt für Wasserbau und Schiffen, Berlin), in: W. M. Keck Laboratory of Hydraulics and Water Resources, Report 167 ( W. P. Ott and J. C. van Uchelen, translators), California Institute of Technology, Pasadena, California.Google Scholar
  160. Silva, A. J., and Hollister, C. D., 1973, Geotechnical properties of ocean sediments recovered with giant piston corer. I. Gulf of Maine, J. Geophys. Res. 78: 3597–3616.Google Scholar
  161. Southard, J. B., 1974, Erodibility of fine abyssal sediment, in: Deep-Sea Sediments: Physical and Mechanical Properties ( A. L. Inderbitzen, ed.), pp. 367–379, Plenum Press, New York.Google Scholar
  162. Southard, J. B., Young R. A., and Hollister, C. D., 1971, Experimental erosion of calcareous ooze, J. Geophys. Res. 76: 5903–5909.Google Scholar
  163. Sulanowski, J. S. K., 1978, Field study of relationship between organic matter and sedi- mentary particles, Ph.D. dissertation, The University of Chicago, Chicago, Illinois.Google Scholar
  164. Swartz, R. C., and Lee, H., III, 1980, Biological processes affecting the distribution of pollutants in marine sediments. Part I. Accumulation, trophic transfer, biodegradation and migration, in: Contaminants and Sediments, Volume 2 ( R. A. Baker, ed.), pp. 533–553, Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  165. Taghon, G. L., Self, R. F. L., and Jumars, P. A., 1978, Predicting particle selection by deposit feeders: A model and its implications, Limnol. Oceanogr. 23: 752–759.Google Scholar
  166. Tenore, K. R., Boyer, L. F., Corral, J., Garcia-Fernandez, C., Gonzalez, N., Gurrian, E. G., Hanson, R. B., Iglesias, J., Krom, M., Lopez-Jamar, E., McClain, J., Pamatmat, M., Perez, A., Rhoads, D. C., Rodriguez, R. M., Santiago, G., Tietjen, J., Westrich, J., and Windom, H. L., 1982, Coastal upwelling in the Rias Bajas, N.W. Spain: Contrasting the benthic regimes of the Ria de Arosa and de Muros, J. Mar. Res. 40 (in press).Google Scholar
  167. Thayer, C. W., 1979, Biological bulldozing and the evolution of marine benthic communities, Science 203: 458–461.Google Scholar
  168. Thorson, G., 1957, Bottom communities, in: Treatise on Marine Ecology and Paleoecology, Volume I: Ecology (J. W. Hedgpeth, ed.), pp. 461–534, Geological Society of America Memoir 67, Geological Society of America, New York.Google Scholar
  169. Ullman, W., 1975, Stabilization of the sediment—water interface by the presence of the extracellular products of microorganisms, Senior thesis, Department of Geology and Geophysics, Yale University, New Haven, Connecticut.Google Scholar
  170. van Straaten, L. M. J. U., 1952, Biogene textures and the formation of shell beds in the Dutch Wadden Sea. I–II, Koninkl. Nederl. Akad. Wet. Proc. Ser. B 55: 500–516.Google Scholar
  171. Vermeij, G. J., 1978, Biogeography and Adaptation Patterns of Marine Life, Harvard Uni- versity Press, Cambridge, Massachusetts.Google Scholar
  172. Wade, B., 1972, A description of a highly diverse soft-bottom community in Kingston Harbour, Jamaica, Mar. Biol. 13: 57–69.Google Scholar
  173. Webb, J. E., 1969, Biologically significant properties of submerged marine sands, Proc. R. Soc. London Ser. B 174: 355–402.Google Scholar
  174. Webb, J. E., Djorges, D. J., Gray, J. S., Hessler, R. R., van Andel, Tj. H., Werner, F., Wolff, T., Zijlstra, J. J., and Rhoads, D. C., 1976, Organism–sediment relationships (Working Group Reports—Group E), in: The Benthic Boundary Layer ( I. N. McCave, ed.), pp. 273–295, Plenum Press, New York.Google Scholar
  175. Whitlatch, R. B., 1976, Seasonal changes in the community structure of the macrobenthos inhabiting the intertidal sand and mud flats of Barnstable Harbor, Massachusetts, Ph.D. dissertation, The University of Chicago, Chicago, Illinois.Google Scholar
  176. Whitlatch, R. B., 1977, Seasonal changes in the community structure of the macrobenthos inhabiting the intertidal sand and mud flats of Barnstable Harbor, Massachusetts, Biol. Bull. 152: 275–294.Google Scholar
  177. Whitlatch, R. B., 1980, Patterns of resource utilization and coexistence in marine intertidal deposit-feeding communities, J. Mar. Res. 38: 743–765.Google Scholar
  178. Wilson, W. H., 1979, Community structure and species diversity of the sedimentary reefs constructed by Petaloproctus socialis (polychaeta: Maldanidae), J. Mar. Res. 37: 623–641.Google Scholar
  179. Wolff, W. J., Sandee, A. J. J., and DeWolf, L., 1977, The development of a benthic ecosystem, Hydrobiologia 52: 107–115.Google Scholar
  180. Woodin, S. A., 1976, Adult—larval interactions in dense infaunal assemblages: Patterns of abundance, J. Mar. Res. 34: 24–41.Google Scholar
  181. Woodin, S. A., 1978, Refuges, disturbance, and community structure: A marine soft-bottom example, Ecology 59: 274–284.Google Scholar
  182. Wooding, R. A., 1973, Drag due to regular arrays of roughness element geometry, Boundary Layer Meteorol. 5: 285–308.Google Scholar
  183. Yingst, J. Y., 1978, Patterns of micro-and meiofaunal abundance in marine sediments, measured with the adenosine triphosphate assay, Mar. Biol. 47: 41–54.Google Scholar
  184. Yingst, J. Y., and Rhoads, D. C., 1978, Seafloor stability in central Long Island Sound. Part II. Biological interactions and their potential importance for seafloor erodibility, in: Estuarine Interactions ( M. N. Wiley, ed.), pp. 245–260, Academic Press, New York.Google Scholar
  185. Yingst, J. Y., and Rhoads, D. C., 1980, The role of bioturbation in the enhancement of microbial turnover rates in marine sediments, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 407–421, University of South Carolina Press, Columbia.Google Scholar
  186. Young, D. K., 1971, Effects of infauna on the sediment and seston of a subtidal environment, Vie Milieu (Supplement) 22: 557–571.Google Scholar
  187. Young, D. K., and Rhoads, D. C., 1971, Animal—sediment relations in Cape Cod Bay, Massachusetts. I. A transect study, Mar. Biol. 11: 242–254.Google Scholar
  188. Young, R. A., 1977, Seaflume: A device for in-situ studies of threshold erosion velocity and erosional behavior of undisturbed marine muds, Mar. Geol. 23: M11 — M18.Google Scholar
  189. Young, R. A., and Southard, J. B., 1978, Erosion of fine-grained marine sediments: Sea-floor and laboratory experiments, Geol. Soc. Am. Bull. 89: 663–672.Google Scholar
  190. Zeitzschel, B., 1980, Sediment—water interactions in nutrient dynamics, in: Marine Benthic Dynamics ( K. R. Tenore and B.C. Coull, eds.), pp. 195–218, University of South Carolina Press, Columbia.Google Scholar
  191. Zobell, C. E., 1943, The effect of solid surfaces on bacterial activity, J. Bacteriol. 46: 38–59.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Donald C. Rhoads
    • 1
  • Larry F. Boyer
    • 1
  1. 1.Department of Geology and GeophysicsYale UniversityNew HavenUSA

Personalised recommendations