Skip to main content

The Effects of Marine Benthos on Physical Properties of Sediments

A Successional Perspective

  • Chapter
Animal-Sediment Relations

Part of the book series: Topics in Geobiology ((TGBI,volume 100))

Abstract

The effects of benthic organisms on the physical properties of granular substrata are well documented. The range of effects has been presented in H. B. Moore (1931, 1939), Schwartz (1932), Dapples (1942), D. G. Moore and Scruton (1957), McMaster (1967), Rhoads (1974), Rowe (1974), Powell (1974), Richards and Park (1976), Myers (1977a,b), Self and Jumars (1978), Lee and Swartz (1980), and Carney (1981). These papers relate the effects of benthic species to changes in grain size, sorting, fabric, water content, compaction, shear strength, and bottom stability. Those autecologic parameters that appear to be most highly correlated with physical modifications of sediments include: method of feeding, feeding selectivity, feeding level relative to the sediment—water interface, degree of mobility, organism size and population density, burrowing depth, and, if the organism is a tube dweller, the density, spacing, and length of tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R. C., 1977, The influence of macrobenthos on chemical diagenesis of marine sediments, Ph.D. dissertation, Department of Geology and Geophysics, Yale University, New Haven, Connecticut.

    Google Scholar 

  • Aller, R. C., 1978, Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry, Am. J. Sci. 217: 1185–1234.

    Google Scholar 

  • Aller, R. C., 1980, Relationships of tube-dwelling benthos with sediment and overlying water chemistry, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 285–308, University of South Carolina Press, Columbia.

    Google Scholar 

  • Aller, R. C., and Cochran, J. K., 1976, 234Th/238U disequilibrium in nearshore sediment: Particle reworking and diagenetic time scales, Earth Planet. Sci. Lett. 20: 37–50.

    Google Scholar 

  • Aller, R. C., and Dodge, R. E., 1974, Animal—sediment relations in a tropical lagoon, Dis- covery Bay, Jamaica, J. Mar. Res. 32: 209–232.

    Google Scholar 

  • Aller, R. C., and Yingst, J. Y., 1978, Biogeochemistry of tube-dwellings: A study of the sedentary polychaete Amphitrite ornata (Leidy), J. Mar. Res. 36: 201–254.

    Google Scholar 

  • Aller, R. C., and Yingst, J. Y., 1980, Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, U.S.A., Mar. Biol. 56: 29–42.

    Google Scholar 

  • Aller, R. C., Benninger, L. K., and Cochran, J. K., 1980, Tracking particle associated processes in nearshore environments by use of 234Th/238U disequilibrium, Earth. Planet. Sci. Lett. 47: 161–175.

    Google Scholar 

  • Aspiras, R. B., Allen, O. N., Harris, R. F., and Chesters, G., 1971, The role of micro-organisms in the stabilization of soil aggregates, Soil Biol. Biochem. 3: 347–353.

    Google Scholar 

  • Atkinson, R. J. A., and Pullin, R. S. V., 1976, The red band-fish, Cepola rubescens L. at Lundy, Rep. Lundy Fld. Soc. 27: 1–6.

    Google Scholar 

  • Baier, R. E., 1973, Influence of the initial surface condition of materials in bioadhesion, in: Proceedings of the Third International Congress on Corrosion and Fouling ( R. F. Acker, B. F. Brown, J. R. DePalma, and W. D. Iverson, eds.), pp. 633–639, National Bureau of Standards, Washington, D.C.

    Google Scholar 

  • Bailey-Brock, J. H., 1979, Sediment trapping by chaetopterid polychaetes on a Hawaiian fringing reef, J. Mar. Res. 37: 643–656.

    Google Scholar 

  • Bell, S. S., and Coull, B. C., 1980, Experimental evidence for a model of juvenile macrofauna—meiofauna interactions, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 179–192, University of South Carolina Press, Columbia.

    Google Scholar 

  • Berger, W. H., and Heath, G. R., 1968, Vertical mixing in pelagic sediments, J. Mar. Res. 26: 134–143.

    Google Scholar 

  • Bokuniewicz, H. J., Gordon, R. B., and Rhoads, D. C., 1975, Mechanical properties of the sediment—water interface, Mar. Geol. 18: 263–278.

    Google Scholar 

  • Boswell, P. G. H., 1961, Muddy Sediments: Some Geotechnical Studies for Geologists, Engineers, and Soil Scientists, Heffer, Cambridge.

    Google Scholar 

  • Bosworth, W. S., Germano, J., Hartzband, D. J., McCusker, A. J., and Rhoads, D. C., 1980, Use of benthic sediment-profile photography in dredging impact analysis and monitoring, Ninth World Dredging Conference, 29–31 October, 1980, Vancouver, British Columbia, Canada.

    Google Scholar 

  • Boyer, L. F., 1980, Production and preservation of surface traces in the intertidal zone, Ph.D. dissertation, Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois.

    Google Scholar 

  • Cadee, G. C., 1979, Sediment reworking by the polychaete Heteromastus filiformis on a tidal flat in the Dutch Wadden Sea, Neth. J. Sea Res. 13: 441–456.

    Google Scholar 

  • Carney, R. S., 1981, Bioturbation and biodeposition, in: Principles of Benthic Marine Paleoecology ( A. J. Boucot, ed.), pp. 357–400, Academic Press, New York.

    Google Scholar 

  • Chapman, G. A., 1949, The thixotropy and dilatancy of a marine soil, J. Mar. Biol. Assoc. U.K. 28: 123–140.

    Google Scholar 

  • Chapman, G. A., and Newell, G. E., 1947, The role of the body-fluid in relation to movement in soft bodied invertebrates. i. The burrowing of Arenicola, Proc. R. Soc. London Ser. 134: 431–455.

    Google Scholar 

  • Clark, R. B., 1964, Dynamics of Metazoan Evolution, Clarendon Press, Oxford, 313 pp. Clements, F. E., 1916, Plant succession: An analysis of the development of vegetation, Carnegie Institute, Washington, Publication 242, 512 pp.

    Google Scholar 

  • Cool, D. O., 1971, Depressions in shallow marine sediments made by benthic fishes, J. Sediment. Petrol. 41: 577–578.

    Google Scholar 

  • Crozier, W., 1918, The amount of bottom material ingested by holothurians (Stichopus), J. Exp. Zool. 26: 379–389.

    Google Scholar 

  • Cullen, D. J., 1973, Bioturbation of superficial marine sediments by interstitial meiobenthos, Nature 242: 323–324.

    Google Scholar 

  • Dapples, E. C., 1942, The effect of macro-organisms upon near shore marine sediments, J. Sediment. Petrol. 12: 118–126.

    Google Scholar 

  • Dauer, D. M., and Simon, J. L., 1975, Repopulation of the polychaete fauna of an intertidal habitat following natural defaunation: Species equilibrium, Oecologia (Berlin) 22: 99–117.

    Google Scholar 

  • Dayton, P. K., and Oliver, J. S., 1980, An evaluation of experimental analyses of population and community patterns in benthic marine environments, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 93–120, University of South Carolina Press, Columbia.

    Google Scholar 

  • Eckman, J. E., 1979, Small-scale patterns and processes in a soft substratum, intertidal community, J. Mar. Res. 37: 437–457.

    Google Scholar 

  • Eckman, J. E., Nowell, A. R. M., and Jumars, P. A., 1979, The influence of animal motility on sediment entrainment, Eos 60: 847 (abs.).

    Google Scholar 

  • Eckman, J. E., Nowell, A. R. M., and Jumars, P. A., 1981, Sediment destabilization by animal tubes, J. Mar. Res. 39: 361–374.

    Google Scholar 

  • Einsele, G., Overbeck, R., Schwarz, H. U., and Unsold, G., 1974, Mass physical properties, sliding and erodibility of experimentally deposited and differently consolidated clayey muds, Sedimentology 21: 339–372.

    Google Scholar 

  • Einstein, H. R., and Krone, R. B., 1962, Experiments to determine modes of cohesive sediment transport in salt water, J. Geophys. Res. 67: 1451–1461.

    Google Scholar 

  • Fager, E. W., 1964, Marine sediments; effects of a tube-building polychaete, Science 143: 356–359.

    Google Scholar 

  • Featherstone, R. P., and Risk, M. J., 1977, Effects of tube-building polychaetes on intertidal sediments of the Minas Basin, Bay of Fundy, J. Sediment. Petrol. 47: 446–450.

    Google Scholar 

  • Fenchel, T., 1970, Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinium, Limnol. Oceanogr. 15: 14–20.

    Google Scholar 

  • Frankel, L., and Meade, D. J., 1973, Mucilaginous matrix of some estuarine sands of Connecticut, J. Sediment. Petrol. 43: 1090–1095.

    Google Scholar 

  • Frankenberg, D., and Smith, K. L., Jr., 1967, Coprophagy in marine animals, Limnol. Oceanogr. 12: 443–450.

    Google Scholar 

  • Frey, R. W. (ed.), 1975, The Study of Trace Fossils, Springer-Verlag, New York.

    Google Scholar 

  • Ginsburg, R. N., and Lowenstam, H. A., 1958, The influence of marine bottom communities on the depositional environment of sediments, J. Geol. 66: 310–318.

    Google Scholar 

  • Goldhaber, M. B., Aller, R. C., Cochran, J. K., Rosenfeld, J. K., Martens, C. S., and Berner, R. A., 1977, Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: Report of the FOAM group, Am. J. Sci. 277: 193–237.

    Google Scholar 

  • Gordon, D. C., Jr., 1966, The effects of the deposit feeding polychaete Pectinaria gouldii on the intertidal sediments of Barnstable Harbor, Limnol. Oceanogr. 11: 327–332.

    Google Scholar 

  • Goupil, D. W., DePalma, V. A., and Baier, R. E., 1973, Prospects for non-toxic fouling-resistant paints, in: Proceedings of the 9th Marine Technology Society Conference, pp. 445–458, Marine Technology Society, Washington, D.C.

    Google Scholar 

  • Grant, W. D., Boyer, L. F., and Sanford, L. P., 1982, The effect of biological processes on the initiation of sediment motion in non-cohesive sediment, J. Mar. Res. 40: (in press).

    Google Scholar 

  • Gray, J. S., 1974, Animal—sediment relationships, Oceanogr. Mar. Biol. Annu. Rev. 12: 223–261.

    Google Scholar 

  • Gularte, R. C., 1978, The erosion of cohesive marine sediments as a rate process, Ph.D. dissertation, University of Rhode Island, Kingston, Rhode Island.

    Google Scholar 

  • Gularte, R. C., Kelley, W. E., and Nacci, V. A., 1980, Erosion of cohesive sediments as a rate process, Ocean Eng. 7: 539–551.

    Google Scholar 

  • Hanor, J. S., and Marshall, N. F., 1971, Mixing of sediment by organisms, in: Trace Fossils: A Field Guide to Selected Localities in Pennsylvanian, Permian, Cretaceous, and Tertiary Rocks of Texas and Related Papers (B. F. Perkins, ed.), pp. 127–135, Louisiana State University Press, Miscellaneous Publication 71–1, Baton Rouge.

    Google Scholar 

  • Hargrave, B. T., 1976, The central role of invertebrate faeces in sediment decomposition, in: The role of Terrestrial and Aquatic Organisms in Decomposition Processes ( J. M. Andersen and A. Macfadyen, eds.), pp. 301–321, Blackwell, Oxford.

    Google Scholar 

  • Hargrave, B. T., 1980, Factors affecting the flux of organic matter to sediments in a marine bay, in: Marine Benthic Dynamics K. R. Tenore and B. C. Coull, eds.), pp. 243–264, University of South Carolina Press, Columbia.

    Google Scholar 

  • Harris, R. F., Chesters, G., and Allen, O. N., 1966, Dynamics of soil aggregation, Adv. Agron. 18: 107–169.

    Google Scholar 

  • Harrison, W., and Wass, M. L., 1965, Frequencies of infaunal invertebrates related to water content of Chesapeake Bay sediments, Southeast. Geol. 6: 177–187.

    Google Scholar 

  • Harrison, W., Lynch, M. P., and Altschaefel, A. G., 1964, Sediments of lower Chesapeake Bay with emphasis on mass properties, J. Sediment. Petrol. 34: 727–755.

    Google Scholar 

  • Haven, D. S., and Morales-Alamo, R., 1966, Aspects of biodeposition by oysters and other invertebrate filter feeders, Limnol. Oceanogr. 11: 487–498.

    Google Scholar 

  • Haven, D. S., and Morales-Alamo, R., 1972, Biodeposition as a factor in sedimentation of fine suspended solids in estuaries, Geol. Soc. Am. Mem. 133: 121–130.

    Google Scholar 

  • Hessler, R. R., and Jumars, P. A., 1974, Abyssal community analysis from replicate box cores in the central No. Pacific, Deep Sea Res. 21: 185–209.

    Google Scholar 

  • Hobbie, J. E., and Lee, C., 1980, Microbial production of extracellular material: Importance in benthic ecology, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 341–346, University of South Carolina Press, Columbia.

    Google Scholar 

  • Holland, A. F., Zingmark, R. G., and Dean, J. M., 1974, Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms, Mar. Biol. 27: 191–196.

    Google Scholar 

  • Honjo, S., 1976, Coccoliths: Production, transportation and sedimentation, Mar. Micropaleontol. 1: 65–79.

    Google Scholar 

  • Johnson, R. G., 1971, Animal—sediment relations in shallow water benthic communities, Mar. Geol. 11: 93–104.

    Google Scholar 

  • Johnson, R. G., 1972, Conceptual models of benthic marine communities, in: Models in Paleobiology ( T. J. M. Schopf, ed.), pp. 149–159, Freeman and Cooper, San Francisco.

    Google Scholar 

  • Johnson, R. G., 1974, Particulate matter at the sediment—water interface in coastal environments, J. Mar. Res. 33: 313–330.

    Google Scholar 

  • Johnson, R. G., 1977, Vertical variation in particulate matter in the upper twenty centimenters of marine sediments, J. Mar. Res. 35: 273–282.

    Google Scholar 

  • Jumars, P. A., and Hessler, R. R., 1976, Hadal community structure: Implications from the Aleutian Trench, J. Mar. Res. 34: 547–560.

    Google Scholar 

  • Jumars, P. A., Nowell, A. R. M., and Self, R. L. F., 1981, A simple model of flow—sediment—organism interactions, Mar. Geol. 42: 155–172.

    Google Scholar 

  • Khailov, K. M., and Finenko, Z. Z., 1970, Organic macromolecular compounds dissolved in sea-water and their inclusion into food chains, in: Marine Food Chains ( J. H. Steele, ed.), pp. 6–18, University of California Press, Berkeley.

    Google Scholar 

  • Krank, K., 1973, Flocculation of suspended sediment in the sea, Nature 246: 348–350.

    Google Scholar 

  • Krank, K., 1975, Sediment deposition from flocculated suspensions, Sedimentology 22: 111–123.

    Google Scholar 

  • Lambe, T. W., and Whitman, R. V., 1969, Soil Mechanics, John Wiley and Sons, New York, 553 pp.

    Google Scholar 

  • Lee, H., II, and Swartz, R. C., 1980, Biological processes affecting the distribution of pollutants in marine bioturbation, in: Contaminants and Sediments ( R. A. Baker, ed.), Volume 2, pp. 555–605, Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • Lettau, P., 1969, Note on aerodynamic roughness parameter estimation, J. Appl. Meteorol. 8: 828–832.

    Google Scholar 

  • Levinton, J. S., 1980, Particle feeding by deposit-feeders: Models, data, and a prospectus, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 423–441, University of South Carolina Press, Columbia.

    Google Scholar 

  • Levinton, J. S., and Lopez, G. R., 1977, A model of renewable resources and limitation of deposit-feeding benthic populations, Oecologia (Berlin) 31: 117–190.

    Google Scholar 

  • Lonsdale, P., and Southard, J. B., 1974, Experimental erosion of North Pacific red clay, Mar. Geol. 17: M51 — M60.

    Google Scholar 

  • Lynch, D. L., and Cotnoir, L. J., Jr., 1956, The influence of clay minerals on the breakdown of certain organic substrates, Soil Sci. Soc. Am. Proc. 20: 367–370.

    Google Scholar 

  • Lynch, M., and Harrison, W., 1970, Sedimentation caused by a tube-building amphipod, J. Sediment. Petrol. 40: 434–435.

    Google Scholar 

  • McCall, P. L., 1975, The influence of disturbance on community patterns and adaptive strategies of the infaunal benthos of central Long Island Sound, Ph.D. dissertation, Yale University, New Haven, Connecticut.

    Google Scholar 

  • McCall, P. L., 1977, Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound, J. Mar. Res. 35: 221–266.

    Google Scholar 

  • McCall, P. L., 1978, Spatial—temporal distributions of Long Island Sound infauna: The role of bottom disturbance in a nearshore marine habitat, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 191–219, Academic Press, New York.

    Google Scholar 

  • McCall, P. L., 1979, The effects of deposit-feeding oligochaetes on particle size and settling velocity of Lake Eerie sediments, J. Sediment. Petrol. 49: 813–818.

    Google Scholar 

  • McCall, P. L., and Fisher, J. B., 1980, Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments, in: Aquatic Oligochaete Biology ( R. O. Brinkhurst and D. G. Cook, eds.), pp. 253–317, Plenum Press, New York.

    Google Scholar 

  • MacIlvaine, J. C., and Ross, D. A., 1979, Sedimentary processes on the continental slope of New England, J. Sediment. Petrol. 49: 565–574.

    Google Scholar 

  • McIntosh, R. P., 1980, The relationship between succession and the recovery process in marine sediments, in: The Recovery Process in Damaged Ecosystems ( J. Cairns, Jr., ed.), pp. 11–62, Ann Arbor Scientific Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • McMaster, R. L., 1962, Seasonal variability in compactness in marine sediments: A laboratory study, Geol. Soc. Am. Bull. 73: 643–646.

    Google Scholar 

  • McMaster, R. L., 1967, Compactness variability of estuarine sediments: An in situ study, in: Estuaries ( G. Lauff, ed.), pp. 261–267, American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Madsen, O. S., and Grant, W. D., 1976, Sediment transport in the coastal environment, Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Report 209, Massachusetts Institute of Technology, Cambridge, Massachusetts, 105 pp.

    Google Scholar 

  • Mare, M. F., 1942, A study of the marine benthic community with special reference to the microorganisms, J. Mar. Biol. Assoc. U. K. 25: 517–554.

    Google Scholar 

  • Marshall, N., and Lucas, K., 1970, Preliminary observations on the properties of bottom sediments with an without eelgrass, Zostera marina, Proc. Natl. Shellfish Assoc. 60: 107–111.

    Google Scholar 

  • Martin, J. P., and Waksman, S. A., 1940, Influence of microorganisms on soil aggregation and erosion, Soil. Sci. 50: 29–47.

    Google Scholar 

  • Martins, J. P., and Craggs, B. A., 1946, Influence of temperature and moisture on the soil-aggregating effect of organic residues, J. Am. Soc. Agron. 38: 322–339.

    Google Scholar 

  • Migniot, C., 1968, Etude des propriétés physiques de différents sediments très fins et de leur comportement sous des actions hydrodynamiques, La Houille Blanche 23: 591–620.

    Google Scholar 

  • Miller, M. C., McCave, I. N., and Komar, P. D., 1977, Threshold of sediment motion under unidirectional currents, Sedimentology 24: 507–527.

    Google Scholar 

  • Mills, E. L., 1967, The biology of an ampeliscid amphipod crustacean sibling species pair, J. Fish. Res. Board Can. 24: 305–355.

    Google Scholar 

  • Mills, E. L., 1969, The community concept in marine zoology, with comments on continua and instability in some marine communities: A review, J. Fish. Res. Board Can. 26: 1415–1428.

    Google Scholar 

  • Mitchell, R., and Nevo, Z., 1964, Effects of bacterial polysaccharide accumulation on infiltration of water through sand, Appl. Microbiol. 12: 219–223.

    Google Scholar 

  • Moore, D. G., and Scruton, P. C., 1957, Minor internal structure of some recent unconsolidated sediments, Bull. Am. Assoc. Petrol. Geol. 41: 2723–2751.

    Google Scholar 

  • Moore, H. B., 1931, The muds of the Clyde Sea area. III. Chemical and physical conditions; rate and nature of sedimentation; and fauna, J. Mar. Biol. Assoc. U. K. 17: 325–358.

    Google Scholar 

  • Moore, H. B., 1939, Faecal pellets in relation to marine deposits, in: Recent Marine Sediments ( P. Trask, ed.), pp. 516–523, American Association of Petroleum Geologists/Dover Press, New York.

    Google Scholar 

  • Morris, H. M., 1955, A new concept of flow in rough conduits, Trans. Am. Soc. Civ. Eng. 120: 373–398.

    Google Scholar 

  • Myers, A. C., 1977a, Sediment processing in a marine subtidal sandy bottom community. I. Physical aspects, J. Mar. Res. 35: 609–632.

    Google Scholar 

  • Myers, A. C., 1977b, Sediment processing in a marine subtidal sandy bottom community. II. Biological consequences, J. Mar. Res. 35: 633–647.

    Google Scholar 

  • Myers, A. C., 1979, Summer and winter burrows of a mantis shrimp, Squilla empusa, in Narragansett Bay, Rhode Island (U.S.A.), Estuarine Coastal, Mar. Sci. 8: 87–98.

    Google Scholar 

  • Neihof, R. A., and Loeb, G. I., 1972, The surface charge of particulate matter in seawater, Limnol. Oceanorgr. 17: 7–16.

    Google Scholar 

  • Neihof, R. A., and Loeb, G. I., 1973, Molecular fouling surfaces in seawater, in: Proceedings of the Third International Congress on Marine Corrosion and Fouling ( R. F. Aker, B. F. Brown, J. R. dePalma, and W. P. Iverson, eds.), pp. 710–718, National Bureau of Standards, Gaithersburg, Virginia.

    Google Scholar 

  • Neuman, A. C., Gebelein, C. P., and Scoffin, T. P., 1970, The composition, structure, and erodibility of subtidal mats, Abaco, Bahamas, J. Sediment. Petrol. 40: 274–297.

    Google Scholar 

  • Nicol, J. A. C., 1967, The Biology of Marine Animals, John Wiley and Sons, New York.

    Google Scholar 

  • Nixon, S. W., Kelly, J. R., Fumas, B. N., Oviatt, C. A., and Hale, S. S., 1980, Phosphorus regeneration and the metabolism of coastal marine bottom communities, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull eds.), pp. 219–242, University of South Carolina Press, Columbia.

    Google Scholar 

  • Nowell, A. R. M., and Church, M., 1979, Turbulent flow in a depth-limited boundary layer, J. Geophys. Res. 84: 4816–4824.

    Google Scholar 

  • Nowell, A. R. M., Jumars, P. A., and Eckman, J. E., 1981, Effects of biological activity on the entrainment of marine sediments, Mar. Geol. 42: 133–153.

    Google Scholar 

  • Orr, M., and Rhoads, D. C., 1982, Acoustic imaging of structures and macrofauna in the upper 10 cm of sediments using a megahertz backscattering system, Mar. Geol. (in press).

    Google Scholar 

  • Osman, R. W., and Whitlatch, R. B., 1978, Patterns of species diversity: Fact or artifact? Paleobiology 4: 41–54.

    Google Scholar 

  • Partheniades, E., 1965, Erosion and deposition of cohesive soils, Proc. Am. Soc. Civ. Eng., J. Hydraul. Div. 91: 105–139.

    Google Scholar 

  • Parthenaides, E., and Paswell, R. E., 1970, Erodibility of channels with cohesive boundary, Proc. Am. Soc. Civ. Eng., J. Hydraul. Div. 96: 755–771.

    Google Scholar 

  • Pearson, T. H., and Rosenberg, R., 1978, Macrobenthic succession in relation to organic enrichment and pollution of the marine environment, Oceanogr. Mar. Biol. Annu. Rev. 16: 229–311.

    Google Scholar 

  • Pearson, T. H., and Stanley, S. O., 1979, Comparative measurement of the redox potential of marine sediments as a rapid means of assessing the effect of organic pollution, Mar. Biol. 53: 371–379.

    Google Scholar 

  • Pemberton, G. S., Risk, M. J., and Buckley, D. E., 1976, Supershrimp: Deep bioturbation in the strait of Canso, Nova Scotia, Science 192: 790–791.

    Google Scholar 

  • Petersen, C. G. J., 1913, Valuation of the sea. II. The animal communities of the sea bottom and their importance for marine zoogeography, Rep. Danish Biol. Stat. 21: 1–44.

    Google Scholar 

  • Phelps, D. K., 1966, Partitioning of the stable elements, Fe, Zn, Se, Sm, within a benthic community, Anasco Bay, Puerto Rico, in: Radioecological Concentration Processes ( B. Aberg and F. P. Hungate, eds.), pp. 721–734, Pergamon Press, New York.

    Google Scholar 

  • Pinck, L. A., Dyal, R. S., and Allison, F. E., 1954, Protein—montmorillonite complexes, their preparation and the effects of soil micro-organisms on their decomposition, Soil Sci. 78: 109–118.

    Google Scholar 

  • Postma, H., 1967, Sediment transport environment, in: Estuaries ( G. H. Lauff, ed.), pp. 158–179, American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Powell, E. N., 1977, Particle size selection and sediment reworking in a funnel feeder, Leptosynapta tenuis (Holothuroidea, Synoptidae), Int. Rev. Ges. Hydrobiol. 62: 385–403.

    Google Scholar 

  • Propp, M. V., Tarasoff, V. G., Cherbadgi, I. I., and Lootnik, N. V., 1980, Benthic—pelagic oxygen and nutrient exchange in a coastal region of the Sea of Japan, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 265–284, University of South Carolina Press, Columbia.

    Google Scholar 

  • Purdy, E., 1964, Sediments as substrates, in: Approaches to Paleoecology ( J. Imbrie and N. Newell, eds.), pp. 238–271, John Wiley and Sons, New York.

    Google Scholar 

  • Raupach, T., 1981, A wind tunnel study of turbulent flow close to regularly arrayed rough surfaces, Boundary Layer Meteorol. 18: 373–397.

    Google Scholar 

  • Revsbech, N. P., Jorgensen, B. B., and Blackburn, T. H., 1979, Oxygen in the sea bottom measured with a microelectrode, Science 207: 1355–1356.

    Google Scholar 

  • Rhoads, D. C., 1963, Rates of sediment reworking by Yoldia limatula in Buzzards Bay, Massachusetts and Long Island Sound, J. Sediment. Petrol. 33: 723–727.

    Google Scholar 

  • Rhoads, D. C., 1967, Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts, J. Geol. 75: 461–476.

    Google Scholar 

  • Rhoads, D. C., 1970, Mass properties, stability and ecology of marine muds related to burrowing activity, in: Trace Fossils ( T. P. Crimes and J. C. Harper, eds.), pp. 391–406, Seel House Press, Liverpool.

    Google Scholar 

  • Rhoads, D. C., 1973, The influence of deposit-feeding benthos on water turbidity and nutrient recycling, Am. J. Sci. 273: 1–22.

    Google Scholar 

  • Rhoads, D. C., 1974, Organism—sediment relations on the muddy sea floor, Oceanogr. Mar. Biol. Annu. Rev. 12: 263–300.

    Google Scholar 

  • Rhoads, D. C., and Boyer, L. F., 1983, Seasonal patterns in sediment resuspension in central Long Island Sound, U.S.A., (in preparation).

    Google Scholar 

  • Rhoads, D. C., and Cande, S., 1971, Sediment profile camera for in situ study of organism—sediment relations, Limnol. Oceanogr. 16: 110–114.

    Google Scholar 

  • Rhoads, D. C., and Germano, J., 1982, Characterization of benthic processes using sediment-profile imaging: An efficient method of Remote Ecological Monitoring of the seafloor (REMOTS system), Mar. Ecol. Prog. Ser. (in press).

    Google Scholar 

  • Rhoads, D. C., and Stanley, D. J., 1964, Biogenic graded bedding, J. Sediment. Petrol. 35: 956–963.

    Google Scholar 

  • Rhoads, D. C., and Young, D. K., 1970, The influence of deposit-feeding organisms on sediment stability and community trophic structure, J. Mar. Res. 28: 150–178.

    Google Scholar 

  • Rhoads, D. C., and Young, D. K., 1971, Animal—sediment relations in Cape Cod Bay, Massachusetts. II. Reworking by Molpadia oolitica (Holothuroidea), Mar. Biol. 11: 255261.

    Google Scholar 

  • Rhoads, D. C., Aller, R. C., and Goldhaber, M., 1977, The influence of colonizing macro-benthos on physical properties and chemical diagenesis of the estuarine seafloor, in: Ecology of Marine Benthos ( B. C. Coull, ed.), pp. 113–138, University of South Carolina Press, Columbia.

    Google Scholar 

  • Rhoads, D. C., McCall, P. L., and Yingst, J. Y., 1978a, Disturbance and production on the estuarine seafloor, Am. Sci. 66: 577–586.

    Google Scholar 

  • Rhoads, D. C., Yingst, J. Y., and Ullman, W., 1978b, Seafloor stability in central Long Island Sound. Part I. Temporal changes in erodibility of fine-grained sediment, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 221–224, Academic Press, New York.

    Google Scholar 

  • Rhoads, D. C., Germano, J., and Boyer, L. F., 1981, Sediment-profile imaging: An efficient method of Remote Ecological Monitoring of the Seafloor (REMOTS system), Oceans 1:561–566

    Google Scholar 

  • Publication No. 81CH1685–7, IEEE, Piscataway, New Jersey.

    Google Scholar 

  • Richards, A. F., and Parks, J. M., 1976, Marine geotechnology: Average sediment properties, selected literature and review of consolidation, stability and bioturbation—geotechnical interactions in the benthic boundary layer, in: The Benthic Boundary Layer ( I. N. McCave, ed.), pp. 157–181, Plenum Press, New York.

    Google Scholar 

  • Richardson, M. D., and Young D. K., 1981, Geoacoustic models and bioturbation, Mar. Geol. 38: 205–218.

    Google Scholar 

  • Riley, G. A., 1963, Organic aggregates in seawater and the dynamics of their formation and utilization, Limnol. Oceanogr. 8: 372–381.

    Google Scholar 

  • Risk, M. J., and Moffat, J. S., 1977, Sedimentological significance of fecal pellets of Macoma baltica in the Minas Basin, Bay of Fundy, J. Sediment. Petrol. 47: 1425–1436.

    Google Scholar 

  • Rowe, G. T., 1974, The effects of the benthic fauna on the physical properties of deep-sea sediments, in: Deep-Sea Sediments: Physical and Mechanical Properties ( A. L. Inderbitzen, ed.), pp. 381–400, Plenum Press, New York.

    Google Scholar 

  • Sanders, H. L., 1958, Benthic studies in Buzzards, Bay. I. Animal—sediment relationships, Limnol. Oceanogr. 3: 245–258.

    Google Scholar 

  • Sanders, H. L., Goudsmit, E. L., Mills, E. L., and Hampson, G. E., 1962, A study of the intertidal fauna of Barnstable Harbor, Massachusetts, Limnol. Oceanogr. 7: 63–70.

    Google Scholar 

  • Santos, S. L., and Bloom, S. A., 1980, Stability in an annually defaunated estuarine soft- bottom community, Oecologia (Berlin) 46: 290–294.

    Google Scholar 

  • Santos, S. L., and Simon, J. L., 1980, Marine soft-bottom community establishment following annual defaunation: Larval or adult recruitment? Mar. Ecol. Prog. Ser. 2: 235–241.

    Google Scholar 

  • Sayre, W. W., and Albertson, M. L., 1963, Roughness spacing in rigid open channels, Trans. Am. Soc. Civ. Eng. 128: 343–372.

    Google Scholar 

  • Schafer, W., 1972, Ecology and Paleoecology of Marine Environments ( I. Oertel and G. Y. Craig, translators), University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Schlichting, H., 1936, Experimentelle Untersuchungen zum Rauhigkeitsproblem, Ing. Arch. 7: 1–34.

    Google Scholar 

  • Schwartz, A., 1932, Der tierische Einfluss auf die Meeressedimente, Senckenbergiana 14: 118–172.

    Google Scholar 

  • Scoffin, T. P., 1970, The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas, J. Sediment. Petrol. 40: 249–273.

    Google Scholar 

  • Self, R. F. L., and Jumars, P. A., 1978, New resource axes for deposit feeders, J. Mar. Res. 36: 627–641.

    Google Scholar 

  • Sepkoski, J. J., 1982, Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna, in: Cyclic and Event Stratification (G. Einsele and A. Seilacher, eds.), Springer-Verlag, New York (in press).

    Google Scholar 

  • Shields, A., 1936, Application of similarity principles and turbulent research to bed-load movement (Mitteilungen der Preussicher Versuchsanstalt für Wasserbau und Schiffen, Berlin), in: W. M. Keck Laboratory of Hydraulics and Water Resources, Report 167 ( W. P. Ott and J. C. van Uchelen, translators), California Institute of Technology, Pasadena, California.

    Google Scholar 

  • Silva, A. J., and Hollister, C. D., 1973, Geotechnical properties of ocean sediments recovered with giant piston corer. I. Gulf of Maine, J. Geophys. Res. 78: 3597–3616.

    Google Scholar 

  • Southard, J. B., 1974, Erodibility of fine abyssal sediment, in: Deep-Sea Sediments: Physical and Mechanical Properties ( A. L. Inderbitzen, ed.), pp. 367–379, Plenum Press, New York.

    Google Scholar 

  • Southard, J. B., Young R. A., and Hollister, C. D., 1971, Experimental erosion of calcareous ooze, J. Geophys. Res. 76: 5903–5909.

    Google Scholar 

  • Sulanowski, J. S. K., 1978, Field study of relationship between organic matter and sedi- mentary particles, Ph.D. dissertation, The University of Chicago, Chicago, Illinois.

    Google Scholar 

  • Swartz, R. C., and Lee, H., III, 1980, Biological processes affecting the distribution of pollutants in marine sediments. Part I. Accumulation, trophic transfer, biodegradation and migration, in: Contaminants and Sediments, Volume 2 ( R. A. Baker, ed.), pp. 533–553, Ann Arbor Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • Taghon, G. L., Self, R. F. L., and Jumars, P. A., 1978, Predicting particle selection by deposit feeders: A model and its implications, Limnol. Oceanogr. 23: 752–759.

    Google Scholar 

  • Tenore, K. R., Boyer, L. F., Corral, J., Garcia-Fernandez, C., Gonzalez, N., Gurrian, E. G., Hanson, R. B., Iglesias, J., Krom, M., Lopez-Jamar, E., McClain, J., Pamatmat, M., Perez, A., Rhoads, D. C., Rodriguez, R. M., Santiago, G., Tietjen, J., Westrich, J., and Windom, H. L., 1982, Coastal upwelling in the Rias Bajas, N.W. Spain: Contrasting the benthic regimes of the Ria de Arosa and de Muros, J. Mar. Res. 40 (in press).

    Google Scholar 

  • Thayer, C. W., 1979, Biological bulldozing and the evolution of marine benthic communities, Science 203: 458–461.

    Google Scholar 

  • Thorson, G., 1957, Bottom communities, in: Treatise on Marine Ecology and Paleoecology, Volume I: Ecology (J. W. Hedgpeth, ed.), pp. 461–534, Geological Society of America Memoir 67, Geological Society of America, New York.

    Google Scholar 

  • Ullman, W., 1975, Stabilization of the sediment—water interface by the presence of the extracellular products of microorganisms, Senior thesis, Department of Geology and Geophysics, Yale University, New Haven, Connecticut.

    Google Scholar 

  • van Straaten, L. M. J. U., 1952, Biogene textures and the formation of shell beds in the Dutch Wadden Sea. I–II, Koninkl. Nederl. Akad. Wet. Proc. Ser. B 55: 500–516.

    Google Scholar 

  • Vermeij, G. J., 1978, Biogeography and Adaptation Patterns of Marine Life, Harvard Uni- versity Press, Cambridge, Massachusetts.

    Google Scholar 

  • Wade, B., 1972, A description of a highly diverse soft-bottom community in Kingston Harbour, Jamaica, Mar. Biol. 13: 57–69.

    Google Scholar 

  • Webb, J. E., 1969, Biologically significant properties of submerged marine sands, Proc. R. Soc. London Ser. B 174: 355–402.

    Google Scholar 

  • Webb, J. E., Djorges, D. J., Gray, J. S., Hessler, R. R., van Andel, Tj. H., Werner, F., Wolff, T., Zijlstra, J. J., and Rhoads, D. C., 1976, Organism–sediment relationships (Working Group Reports—Group E), in: The Benthic Boundary Layer ( I. N. McCave, ed.), pp. 273–295, Plenum Press, New York.

    Google Scholar 

  • Whitlatch, R. B., 1976, Seasonal changes in the community structure of the macrobenthos inhabiting the intertidal sand and mud flats of Barnstable Harbor, Massachusetts, Ph.D. dissertation, The University of Chicago, Chicago, Illinois.

    Google Scholar 

  • Whitlatch, R. B., 1977, Seasonal changes in the community structure of the macrobenthos inhabiting the intertidal sand and mud flats of Barnstable Harbor, Massachusetts, Biol. Bull. 152: 275–294.

    Google Scholar 

  • Whitlatch, R. B., 1980, Patterns of resource utilization and coexistence in marine intertidal deposit-feeding communities, J. Mar. Res. 38: 743–765.

    Google Scholar 

  • Wilson, W. H., 1979, Community structure and species diversity of the sedimentary reefs constructed by Petaloproctus socialis (polychaeta: Maldanidae), J. Mar. Res. 37: 623–641.

    Google Scholar 

  • Wolff, W. J., Sandee, A. J. J., and DeWolf, L., 1977, The development of a benthic ecosystem, Hydrobiologia 52: 107–115.

    Google Scholar 

  • Woodin, S. A., 1976, Adult—larval interactions in dense infaunal assemblages: Patterns of abundance, J. Mar. Res. 34: 24–41.

    Google Scholar 

  • Woodin, S. A., 1978, Refuges, disturbance, and community structure: A marine soft-bottom example, Ecology 59: 274–284.

    Google Scholar 

  • Wooding, R. A., 1973, Drag due to regular arrays of roughness element geometry, Boundary Layer Meteorol. 5: 285–308.

    Google Scholar 

  • Yingst, J. Y., 1978, Patterns of micro-and meiofaunal abundance in marine sediments, measured with the adenosine triphosphate assay, Mar. Biol. 47: 41–54.

    Google Scholar 

  • Yingst, J. Y., and Rhoads, D. C., 1978, Seafloor stability in central Long Island Sound. Part II. Biological interactions and their potential importance for seafloor erodibility, in: Estuarine Interactions ( M. N. Wiley, ed.), pp. 245–260, Academic Press, New York.

    Google Scholar 

  • Yingst, J. Y., and Rhoads, D. C., 1980, The role of bioturbation in the enhancement of microbial turnover rates in marine sediments, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 407–421, University of South Carolina Press, Columbia.

    Google Scholar 

  • Young, D. K., 1971, Effects of infauna on the sediment and seston of a subtidal environment, Vie Milieu (Supplement) 22: 557–571.

    Google Scholar 

  • Young, D. K., and Rhoads, D. C., 1971, Animal—sediment relations in Cape Cod Bay, Massachusetts. I. A transect study, Mar. Biol. 11: 242–254.

    Google Scholar 

  • Young, R. A., 1977, Seaflume: A device for in-situ studies of threshold erosion velocity and erosional behavior of undisturbed marine muds, Mar. Geol. 23: M11 — M18.

    Google Scholar 

  • Young, R. A., and Southard, J. B., 1978, Erosion of fine-grained marine sediments: Sea-floor and laboratory experiments, Geol. Soc. Am. Bull. 89: 663–672.

    Google Scholar 

  • Zeitzschel, B., 1980, Sediment—water interactions in nutrient dynamics, in: Marine Benthic Dynamics ( K. R. Tenore and B.C. Coull, eds.), pp. 195–218, University of South Carolina Press, Columbia.

    Google Scholar 

  • Zobell, C. E., 1943, The effect of solid surfaces on bacterial activity, J. Bacteriol. 46: 38–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rhoads, D.C., Boyer, L.F. (1982). The Effects of Marine Benthos on Physical Properties of Sediments. In: McCall, P.L., Tevesz, M.J.S. (eds) Animal-Sediment Relations. Topics in Geobiology, vol 100. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1317-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1317-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1319-0

  • Online ISBN: 978-1-4757-1317-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics