The GABAA Receptor Complex: Is it a Locus of Action for Inhalation Anesthetics?

  • Eric J. Moody
  • Herman J. C. Yeh
  • Phil Skolnick


The mechanism(s) by which chemically diverse compounds produce general anesthesia (i.e., reversible unconsciousness) remains one of the enigmas of modern pharmacology despite intensive investigation for almost a century. While the structural diversity of general anesthetics (which range from barbiturates, alcohols and steroids to gases) has complicated the search for a common target site, the physical characteristics (high vapor pressure, low solubility in aqueous media and low potency) of commonly used inhalation agents such as halothane renders many pharmacological, neurochemical and electrophysiological approaches problematic.


GABAA Receptor General Anesthetic Inverse Agonist Inhalation Anesthetic Inhalation Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alifimoff JK, Firestone LL, Miller KW (1989): Anaesthetic potencies of primary alkanols: implications for the molecular dimensions of the anaesthetic site. Br J Pharmacol 96:9–16CrossRefGoogle Scholar
  2. Akaike N, Hattori K, Oomura Y, Carpenter D (1985): Bicuculline and picrotoxin block γ-aminobutyric acid gated Cl- conductance by different mechanisms. Experientia 41:70–71CrossRefGoogle Scholar
  3. Cash DJ, Subbarao K (1987): Desensitization of γ-amino-butyric acid receptor from rat brain: two distinguishable receptors on the same membrane. Biochemistry 26:7556–7562CrossRefGoogle Scholar
  4. Curran MA, Newman LM, Becker GL (1988): Barbiturate anesthesia and alcohol tolerance in a rat model. Anesth Analg 67:868–71CrossRefGoogle Scholar
  5. Elliott J (1988): Protein pockets and anaesthesia. Trends Pharmacol Sci 9:10–11CrossRefGoogle Scholar
  6. Evers AS, Berkowitz BA, d’Avignon DA (1987): Correlation between the anesthetic effect of halothane and saturable binding in brain. Nature 328:157–160CrossRefGoogle Scholar
  7. Evers AS, Berkowitz BA, d’Avignon DA (1989): Correction: correlation between the anesthetic effect of halothane and saturable binding in brain. Nature 341:766CrossRefGoogle Scholar
  8. Forman S, Miller K (1989): Molecular sites of anesthetic action in postsynaptic nicotinic membranes. Trends Pharmacol Sci 10:449–452CrossRefGoogle Scholar
  9. Franks NP, Lieb WR (1984): Do general anaesthetics act by competitive binding to specific receptors? Nature 310:599–601CrossRefGoogle Scholar
  10. Franks NP, Lieb WR (1986): Partitioning of long-chain alcohols into lipid bilayers: Implications for mechanisms of general anesthesia. Proc Natl Acad Sci (USA) 83:5116–5120CrossRefGoogle Scholar
  11. Franks NP, Lieb WR (1987): What is the molecular Nature of general anaesthetic target sites? Trends Pharmacol Sci 8:169–174CrossRefGoogle Scholar
  12. Harris CM, Lal H (1988): Central nervous system effects of the imidazobenzodiazepine Ro15–4513. Drug Dev Res 13:187–203CrossRefGoogle Scholar
  13. Havoundjian H, Paul SM, Skolnick P (1986): The permeability of γ-aminobutyric acid-gated chloride channels is described by the binding of a “cage” convulsant, t-butylbicyclophosphoro[35S]thionate. Proc Natl Acad Sci (USA) 83:9241–9244CrossRefGoogle Scholar
  14. Haydon DA, Hendry BM, Levinson SR, Requena J (1977): The molecular mechanisms of anaesthesia. Nature 268:356–358CrossRefGoogle Scholar
  15. Hollingsworth E, McNeal E, Burton J, Williams R, Daly R, Creveling D, (1985): Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3′5′-monophosphate generating systems, receptors, and enzymes. J Neurosci 5:2240–2253Google Scholar
  16. Huidobro-Toro JP, Bleck V, Allan AM, Harris RA (1987): Neurochemical actions of anesthetic drugs on the γ-aminobutyric acid receptor-chloride channel complex. J Pharmacol Exp Ther 242:963–969Google Scholar
  17. Janoff AS, Miller KW (1982): A critical assessment of the lipid theories of general anesthetic action. In: Biological membranes. Chapman D, ed. London: Academic Press, pp417–476Google Scholar
  18. Janoff AS, Pringle MJ, Miller KW (1981): Correlation of general anesthetic potency with solubility in membranes. Biochim Biophys Acta 649:125–128CrossRefGoogle Scholar
  19. Johnstone RE, Kulp RA, Smith TC (1975): Effects of acute and chronic ethanol administration on isoflurane requirement in mice. Anesth Analg 58:277–282Google Scholar
  20. Keane PE, Biziere K (1987): The effects of general anaesthetics on gabaergic synaptic transmission. Life Sci 41:1437–1448CrossRefGoogle Scholar
  21. Keck K, Firestone L, Nemoto E, Winter P (1988): Ro15–4513, a benzodiazepine (BDZ) inverse agonist, antagonizes the potencies of general anesthetics in rana pipens tadpoles. FASEB Journal 2: Abstract #6320 Google Scholar
  22. Koblin DD, Deady JE, Dong DE (1980): Mice tolerant to nitrous oxide are also tolerant to alcohol. J Pharmacol Exp Ther 213:309–316Google Scholar
  23. Levitan ES, Schofield P, Burt D, Rhee L, Wisden W, Kohler M, Fujita N, Rodriguez H, Stephenson A, Darlison M, Barnard EA, Seeburg P (1988): Structural and functional basis for GABAA receptor heterogeneity. Nature 335:76–79CrossRefGoogle Scholar
  24. Lewin AH, de Costa BR, Rice KC, Skolnick P (1989): Meta- and para- isothiocyanato-t-butylbicycloorthobenzoate: irreversible ligands of the gammaaminobutyric acid-regulated chloride ionophore. Mol Pharmacol 35:189–194Google Scholar
  25. Majewska M, Harrison N, Schwartz R, Barker J, Paul S (1986): Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007CrossRefGoogle Scholar
  26. Meyer HH: The theory of narcosis. Harvey Lect 1905–6. 11–17Google Scholar
  27. Miller D, Yourick D, Tessel R (1989): Antagonism of mnethoxyflurane-induced anesthesia in rats by benzodiazepine inverse agonists. Eur J Pharmacol 173:1–10CrossRefGoogle Scholar
  28. Miller KW (1985): The nature of the site of general anesthesia. Intl Rev Neurobiol 27:1–61CrossRefGoogle Scholar
  29. Moody EJ, Skolnick P (1988): The imidazobenzodiazepine Ro15–4513 antagonizes methoxyflurane anesthesia. Life Sci 43:1269–1276CrossRefGoogle Scholar
  30. Moody EJ, Skolnick P (1989): Chormethiazole: neurochemical actions at the γ-aminobutyric acid receptor complex. Eur J Pharmacol 164:153–158CrossRefGoogle Scholar
  31. Moody EJ, Suzdak PD, Paul SM, Skolnick P (1988): Modulation of the benzodiazepine/gamma-aminobutyric aacid chloride channel complex by inhalation anesthetics. J Neurochem 51:1386–1393CrossRefGoogle Scholar
  32. Overton E (1901): Studien uber die narkose zugleich ein beintrag zur allgemeinen pharmakologie. Jena: Verlag Gustav FischerGoogle Scholar
  33. Pringle MJ, Brown KB, Miller KW (1981): Can the lipid theories of anesthesia account for the cutoff in anesthetic potency in homologous series of alcohols? Mol Pharmacol 19:49–55Google Scholar
  34. Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989): Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585CrossRefGoogle Scholar
  35. Ramanjaneyulu R, Ticku M (1984): Binding characteristics and interactions of depressant drugs with [35S]t-butylbicyclophosphorothionate, a ligand that binds to the picrotoxinin site. J Neurochem 42:221–229CrossRefGoogle Scholar
  36. Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA, Seeburg PH, Barnard EA (1987): Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor superfamily. Nature 328:221–227CrossRefGoogle Scholar
  37. Schofield PR, Pritchett DB, Sontheimer H, Kettenmann H, Seeburg PH (1989): Sequence and expression of human GABAA receptor α 1 and β 1 subunits. FEBS Letts 244:361–364CrossRefGoogle Scholar
  38. Scholfield, CN (1988): Molecular mechanism of general anaesthetic action? Trends Pharmacol Sci 9:11–12CrossRefGoogle Scholar
  39. Schwartz R, Jackson J, Weigart D, Skolnick P, Paul S (1985): Characterization of barbiturate-stimulated chloride efflux from rat brain synaptoneurosomes. J Neurosci 5:2963–2970Google Scholar
  40. Schwartz R, Skolnick P, Seale T, Paul S (1986): Demonstration of GABA/barbiturate-receptor-mediated chloride transport in rat brain synaptoneurosomes: a functional assay of GABA receptor-effector coupling. In: GABAergic Transmission and Anxiety. Biggio G, Costa E, eds. New York: Raven Press, pp 33–49Google Scholar
  41. Schweri M, Cain M, Cook J, Paul S, Skolnick P (1982): Blockade of 3-carbomethoxy-β-carboline induced seizures by diazepam and the benzodiazepine antagonists, Ro15–1788 and CGS 8216. Pharmacol Biochem Behav 17:457–460CrossRefGoogle Scholar
  42. Sieghart W, Eichinger A, Richards JG, Mohler H (1987): Photoaffinity labeling of benzodiazepine receptor proteins with the partial inverse agonist [3H] Ro15–4513: biochemical and autoradiographic study. J Neurochem 48:46–52CrossRefGoogle Scholar
  43. Skolnick P, Paul S (1988): The benzodiazepine/GABA receptor chloride channel complex. ISI Atlas Pharmacol 2:19–22Google Scholar
  44. Squires RF, Casida JE, Richardson M, Saederup E (1983): [35S]t-Butylbicyclophosphorothionate binds with high affinity to brain specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol Pharmacol 23:326–336Google Scholar
  45. Stevens C (1987): Channel families in the brain. Nature 328:198–199CrossRefGoogle Scholar
  46. Suzdak PD, Glowa JR, Crawley JN, Schwartz RD, Skolnick P, Paul SM (1986b): A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science 234:1243–1247CrossRefGoogle Scholar
  47. Suzdak P, Schwartz R, Skolnick P, Paul S (1986a): Ethanol stimulates γ-aminobutyric acid-mediated chloride transport in rat brain synaptoneurosomes. Proc Nat Acad Sci (USA) 83:4071–4075CrossRefGoogle Scholar
  48. Suzdak P, Schwartz R, Skolnick P, Paul S (1988): Alcohols stimulate γ- aminobutyric acid receptor mediated chloride uptake in brain vesicles: correlation with intoxication potency. Brain Res 444:340–345CrossRefGoogle Scholar
  49. Tessel RE, Miller DW, Yourick DL (1987): Evidence for the involvement of GABA-chloride channels in a behavioral effect of mnethoxyflurane. Pharmacologist 29: Abstract #357 (p 172)Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Eric J. Moody
  • Herman J. C. Yeh
  • Phil Skolnick

There are no affiliations available

Personalised recommendations