Skip to main content

Probing Molecular Sites of Action for Alcohol’s Acute and Chronic Effects on Synaptoneurosome Membranes: A Potential Tool for Studying Drug-Receptor Interactions

  • Chapter
Neuropharmacology of Ethanol

Abstract

Ethanol is active in the central nervous system (CNS), producing a variety of effects when administered acutely. Long-term administration of ethanol produces tolerance and physical dependence. The study of alcohol’s effects on the CNS has been complicated by the absence of a specific binding site that would indicate the primary locus of action for this molecule on the cells of the CNS. Unlike other drugs of abuse such as opiates, psychomotor stimulants and hallucinogens, there is no receptor molecule, reuptake site or ion channel that possesses high affinity binding for ethanol. Historically, Meyer (1906) and Overton (1901) described the solubility of ethanol and its ability to reach rapid equilibrium between the intra- and extracellular environment to explain some of ethanol’s actions on cellular processes and the biophysical state of cells and cellular organelles. The seemingly diverse effects of ethanol on the CNS were explained by a common underlying mechanism: through the distribution of ethanol within the matrix of biological membranes and subsequent alterations in the structure and function of these membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affolter H, Coronado R (1985): Agonists of Bay K 8644 and CGP Z8392 Open channels from skeletal muscle transverse tubules. Biophys J 48:341–347

    Article  Google Scholar 

  • Affolter H, Coronado R (1986): The sidedness of reconstituted calcium channels from muscle transverse tubules as determined by D-600 and D-890 blockade. Biophys J 49:197a

    Article  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965): Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  Google Scholar 

  • Blair LAC, Levitan ES, Marshall J, Dionee VE, Barnard EA (1988): Single subunits of the GABAA receptor form ion channels with properties of the native receptor. Science 242:577–579

    Article  Google Scholar 

  • Blanton M, McCardy E, Gallaher T, Wang HH (1988): Noncompetitive inhibitors reach their binding site in the acetylcholine receptor by two different paths. Mol Pharm 33:634–642

    Google Scholar 

  • Blaurock AE, King GI (1977): Asymmetric structure of the purple membrane. Science 186:1101–1104

    Article  Google Scholar 

  • Braestrup C, Albrechtsen R, Squires RF (1977): High densities of benzodiazepine receptors in human cortical areas. Nature 269:702–704

    Article  Google Scholar 

  • Brett RS, Dilger JP, Yland KF (1988): Isoflurane causes “flickering” of the acetylcholine receptor channel: observations using the patch clamp. Anesthesiology 69:161–170

    Article  Google Scholar 

  • Britton KT, Ehlers CL, Koob GF (1988): Is ethanol antagonist Ro15–4513 selective for ethanol? Science 239:648–649

    Article  Google Scholar 

  • Carvalho CM, Oliveira CR, Lima MP, Leysen JE, Carvalho AP (1989): Partition of Ca+2 antagonists in brain plasma membranes. Biochem Pharmacol 38:2121–2127

    Article  Google Scholar 

  • Changeux J, Devillers-Thiery A, Chemouilli P (1984): Acetylcholine receptor: an allosteric protein. Science 225:1335–1345

    Article  Google Scholar 

  • Chester DW, Herbette LG, Mason RP, Joslyn AF, Triggle DJ, Koppel DE (1987): Diffusion of dihydropyridine calcium channel antagonists in cardiac sarcolemmal lipid multibilayers. Biophys J 52:1021–1030

    Article  Google Scholar 

  • Clark NA, Rothschild KJ, Luipold DA, Simon BA (1980): Surface-induced lamellar orientation of multilayer membrane arrays. Theoretical analysis and a new method with application to purple membrane fragments. Biophys J 31:65–96

    Article  Google Scholar 

  • Colvin RA, Ashavaid TF, Herbette LG (1985): Structure-function studies of canine cardiac sarcolemmal membranes. I. Estimation of receptor site densities. Biochim Biophys Acta 812:601–608

    Article  Google Scholar 

  • Davidson M, Wilce P, Shanley B (1988): Ethanol increases synaptosomal free calcium concentration. Neurosci Lett 89:165–169

    Article  Google Scholar 

  • Dolin S, Little H, Hudspith M, Pagonis C, Littleton J (1987): Increased dihydropyridine-sensitive calcium channels in rat brain may underlie ethanol physical dependence. Neuropharmacology 26:275–279

    Article  Google Scholar 

  • Fiehn W, Peter JB, Mead JF, Gan-Elepano M (1971): Lipids and fatty acids of sarcolemma, sarcoplasmic reticulum, and mitochondria from rat skeletal muscle. J Biol Chem 248:5617–5620

    Google Scholar 

  • Franks NP, Lieb WR (1981): X-ray and neutron diffraction studies of lipid bilayers. In: Liposomes: From Physical Structure to Therapeutic Applications. Knight et al., eds. New York: Elsevier/North-Holland Biomedical Press, pp 243–271

    Google Scholar 

  • Gage PW, Robertson B (1985): Prolongation of inhibitory postsynaptic currents by pentobarbitone, halothane and ketamine in CA 1 pyramidal cells in rat hippocampus. Br J Pharmacol 85:675–681

    Article  Google Scholar 

  • Giraudat J, Dennis M, Heidmann T, Haumont PY, Lederer R, Changeux JP (1987) : Structure of the high-affinity site for noncompetitive blockers of the acetycholine receptor. [3H] chlorpromazine labels homologous residues in the beta and delta chains. Biochemistry 26:2410–2418

    Article  Google Scholar 

  • Goldstein DB, Chin JH, Lyon RC (1982): Ethanol disordering of spin-labeled mouse brain membranes: correlation with genetically determined ethanol sensitivity of mice. Proc Natl Acad Sci 79:4231–4233

    Article  Google Scholar 

  • Gordon ER, Rochman J, Arai M, Lieber CS (1982): Lack of correlation between hepatic mitochondria membrane structure and functions in ethanol-fed rats. Science 216:1320–1321

    Article  Google Scholar 

  • Greenberg DA, Carpenter CL, Messing RO (1987): Ethanol-induced component of 45Ca2+ uptake in PC12 cells is sensitive to Ca2+ channel modulating drugs. Brain Res 410:143–146

    Article  Google Scholar 

  • Harris RA, Hitzemann RJ (1981): Membrane fluidity and alcohol actions. Curr Alcohol 8:379–404

    Google Scholar 

  • Harris RA, Hood WF (1980): Inhibition of synaptosomal calcium uptake by ethanol. J Pharmacol Exp Ther 213:562–568

    Google Scholar 

  • Harris DP, Sinclair JG (1984): Ethanol-GABA interactions at the rat purkinje cell. Gen Pharmacol 15:449–454

    Article  Google Scholar 

  • Heidmann T, Changeux J-P (1984): Time-resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformation. PNAS (USA) 81:1897–1901

    Article  Google Scholar 

  • Herbette LG, Chester DW, Rhodes DG (1986): Structural analysis of drug molecules in biological membranes. Biophys J 49:91–94

    Article  Google Scholar 

  • Herbette LG, Katz AM, Sturtevant JM (1983): Comparisons of the interactions of proparanol and timolol with model and biological membrane systems. Mol Pharm 24:259–269

    Google Scholar 

  • Herbette LG, MacAlister T, Ashavaid TF, Colvin RA(1985a): Structure-function studies of canine cardiac sarcolemmal membranes. II. Structural organization of the sarcolemmal membrane as determined by electron microscopy and lamellar x-ray diffraction. Biochim Biophys Acta 812:609–623

    Article  Google Scholar 

  • Herbette LG, Marquardt J, Scarpa A, Blasie JK (1977): A direct analysis of lamellar x-ray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum. Biophys J 20:245–272

    Article  Google Scholar 

  • Herbette LG, Napolitano CA, Messineo FC, Katz AM (1985b): Interaction of amphiphilic molecules with biological membranes. In Advances in Myocardiology. Vol. 5. Harris P, Poole-Wilson PA, eds. New York: Plenum Publishing Corp. pp 333–346

    Google Scholar 

  • Herbette LG, Van Erve YMH, Rhodes DG (1989): Interaction of 1,4-dihydropyridine calcium channel antagonists with biological membranes: lipid bilayer partitioning could occur before drug binding to receptors. J Mol Cell Cardiol 21:187–201

    Article  Google Scholar 

  • Hille KB (1977): Local anesthetics: hydrophilic and hydrophobic pathways for the drug receptor reaction. J Gen Physiol 69:497–515

    Article  Google Scholar 

  • Hollingsworth EB, McNeal ET, Burton JL, Williams RJ, Daly JW, Creveling CR (1985): Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclicadenosine 3′:5′-monophosphategenerating systems, receptors, and enzymes. J Neurosci 5:2240–2253

    Google Scholar 

  • Hudspith MJ, Brennan CH, Charles S, Littleton JM (1987): Dihydropyridinesensitive Ca2+ channels and inositol phospholipid metabolism in ethanol physical dependence. Ann NY Acad Sci 492:156–169

    Article  Google Scholar 

  • Hudspith MJ, Littleton JM (1986): Enhanced effect of Bay K 8644 on inositol phospholipid breakdown in brain slices from ethanol dependent rats. Br J Pharmacol 88:623P

    Google Scholar 

  • King GI, White SH (1985): Molecular packing and area compressibility of lipid bilayers. Proc Natl Acad Sci (USA) 82:6532–6536

    Article  Google Scholar 

  • Kirschner DA, Sidman RL (1976): X-ray diffraction study of myelin structure in immature and mutant mice. Biochim Biophys Acta 448:73–87

    Article  Google Scholar 

  • Kobilka B, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ (1988): Chimeric alpha2-, beta2 adrenergic receptors: delineation of domains in- volved in effector coupling and ligand binding specificity. Science 240:1310–1316

    Article  Google Scholar 

  • Kokubun S, Reuter H (1984): Dihydropyridine derivatives prolong the open state of Ca++ channel in cultured cardiac cells. Proc Natl Acad Sci (USA) 81:4824–4827

    Article  Google Scholar 

  • Leslie SW, Barr E, Chandler J, Farrar RP (1983): Inhibition of fast- and slowphase depolarization-dependent synaptosomal calcium uptake by ethanol. J Pharmacol Exp Ther 225:571–575

    Google Scholar 

  • Little HJ, Dolin S, Halsey MJ (1986): Calcium channel antagonists decrease ethanol withdrawal syndrome. Life Sci 39:2059–2065

    Article  Google Scholar 

  • Little HJ, Dolin SJ (1987): Lack of tolerance to ethanol after concurrent administration of nitrendipine. Brit J Pharmacol 92:606P

    Google Scholar 

  • Littleton JM, Little HJ (1988): Dihydropyridine-sensitive Ca2+ channels in brain are involved in the central nervous system hyperexcitability associated with alcohol withdrawal states. Ann NY Acad Sci 522:199–202

    Article  Google Scholar 

  • Lyon RC, Goldstein DB (1983): Changes in synaptic membrane order associated with chronic ethanol treatment inmice. Mol Pharmacol 23:86–91

    Google Scholar 

  • Mancillas JR, Siggins GR, Bloom FE (1986): Systemic ethanol: selective enhancement of responses to acetylcholine and somatostatin in hippocampus. Science 231:161–163

    Article  Google Scholar 

  • Mason RP, Gonye GE, Chester DW, Herbette LG (1989a): Partitioning and location of Bay K 8644, 1,4-dihydropyridine calcium channel agonist, in model and biological lipid membranes. Biophys J 55:769–778

    Article  Google Scholar 

  • Mason RP, Campbell SF, Wang S-D, Herbette LG (1989b): Comparison of location and binding for the positively charged 1,4-dihydropyridine calcium channel antagonist amlodine with uncharged drug of this class in cardiac membranes. Mol Pharmacol 36:634–640

    Google Scholar 

  • Mason RP, Chester DW (1989): Diffusional Dynamics of an active rhodaminelabeled 1,4-dihydropyridine in sarcolemmal lipid multibilayers. Biophys J 56:1193–1201

    Article  Google Scholar 

  • Mason RP, Moring J, Herbette LG (1990): A molecular model involving the membrane bilayer in the binding of lipid soluble drugs to their receptors in heart and brain. Nucl Med Biol 17:13–33

    Google Scholar 

  • McCloskey M, Poo M-M (1986): Rates of membrane associated reactions: reduction in demensionality revisited. J Cell Biol 102:88–96

    Article  Google Scholar 

  • Messing RO, Carpenter CL, Diamond I, Greenberg DA (1986): Ethanol regulates calcium channels in clonal neural cells. Proc Natl Acad Sci (USA) 83:6213–6215

    Article  Google Scholar 

  • Meyer HH (1906): Harvey Lectures. pp 11–17

    Google Scholar 

  • Mohler H, Okada T (1977): Benzodiazepine receptor: demonstration in the central nervous system. Science 198:849–851

    Article  Google Scholar 

  • Mohler H, Sieghert W, Richards JG, Hunkeler W (1984): Photoaffinity labeling of benzodiazepine receptors with a partial inverse agonist. Eur J Pharmacol 102:191–192

    Article  Google Scholar 

  • Moody MF (1963): X-ray diffraction pattern of nerve myelin: a method for determining the phases. Science 142:1173–1174

    Article  Google Scholar 

  • Moring J, Shoemaker WJ, Skita V, Mason RP, Hayden HC, Salomon RM, Herbette LG (1990): Rat cerebral cortical synaptoneurosomal membranes. Structure and interactions with imidazobenzodiazepine and 1,4-dihydropyridine calcium channel drugs. Biophys J 58:513–531

    Article  Google Scholar 

  • Muller WE (1987): The Benzodiazepine Receptor. Cambridge University Press

    Google Scholar 

  • Overton E (1901): Studien über die Nar Kose. Jena: Fisher

    Google Scholar 

  • Panza G, Grebb JA, Sanna E, Wright Jr. AG, Hanbauer I (1985): Evidence for down-regulation of 3H-nitrendipine recognition sites in mouse brain after long-term treatment with nifedipine or verapamil. Neurophamacology 24:1113–1117

    Article  Google Scholar 

  • Peper K, Bradley RJ, Dreyer F (1982): The acetylcholine receptor at the neuromuscular junction. Physiol Rev 62:1271–1340

    Google Scholar 

  • Polokoff MA, Simon TJ, Harris RA, Simon FR, Iwahashi M (1985): Chronic ethanol increases liver plasma membrane fluidity. Biochemistry 24:3114–3120

    Article  Google Scholar 

  • Puddey IB, Beilin LJ, Vandongen R (1986): Lack of effect of acute alcohol ingestion on erythrocyte NA+, K+ ATPase activity or passive sodium uptake in vivo in man. J Stud Alcohol 47(6)

    Google Scholar 

  • Renau-Piqueras J, Miragall F, Marques A, Baguena-Cervellera R, Guerri C (1987): Chronic ethanol consumption affects filipin-cholesterol complexes and intramembranous particles of synaptosomes of rat brain cortex. Alcholism: Clin Exp Res 11:486–493

    Article  Google Scholar 

  • Rhodes DG, Sarmiento JG, Herbette LG (1985): Kinetics of binding of membrane-active drugs to receptor sites. Diffusion limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site. Mol Pharmacol 27:612–623

    Google Scholar 

  • Rius R, Bergamaschi S, Di Fonso F, Govoni S, Trabucchi M, and Rossi F (1987): Acute ethanol effect on calcium antagonist binding in rat brain. Brain Res 402:359–361

    Article  Google Scholar 

  • Rottenberg H, Waring A, Rubin E, reply by Gordon ER. (1984): Alcohol-induced tolerance in mitochondrial membranes. Science 223:193–194,

    Article  Google Scholar 

  • Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ranachandran J, Reale V, Glencorse TA, Seeburg PH, Barnard EA (1987): Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328:221–227

    Article  Google Scholar 

  • Sedzik J, Toews AD, Blaurock AE, Morell P (1984): Resistance to disruption of multilamellar fragments of central nervous system myelin. J Neurochem 43(5):1415–1420

    Article  Google Scholar 

  • Sieghart W, Eichinger A, Riederer P, Jellinger K (1985): Comparison of benzodiazepine receptor binding in membranes from human or rat brain. Neuropharmacology 24:751–759

    Article  Google Scholar 

  • Stamatoff JB, Krimm S (1976): Phase determination of x-ray reflections for membrane-type systems with constant fluid density. Biophys J 16:503–516

    Article  Google Scholar 

  • Suzdak PD, Glowa JR, Crawley JN, Skolnick P, and Paul SM (1988): Response. Science 239:649–650

    Article  Google Scholar 

  • Suzdak PD, Glowa JR, Crawley JN, Schwartz RD, Skolnick P, Paul SM (1986b): A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science 234:243–1247

    Article  Google Scholar 

  • Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1986a): Ethanol stimulates γ -aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci (USA) 83:4071–4075

    Article  Google Scholar 

  • Sweetnam P, Nestler E, Gallombardo P, Brown S, Duman R, Bracha HS, Tallman J (1987): Comparison of the molecular structure of GABA/benzodiazepine receptors purified from rat and human cerebellum. Mol Brain Res 2:223–233

    Article  Google Scholar 

  • Szabo G, Hoffman PL, Tabakoff B (1988): Forskolin promotes the development of ethanol tolerance in 6-hydroxydopamine-treated mice. Life Sci 42:615–621

    Article  Google Scholar 

  • Tabakoff B, Hoffman PL, Liljequist S (1987): Effects of ethanol on the activity of brain enzymes. Enzyme 37:70–86

    Google Scholar 

  • Takahashi M, Seagar MJ, Jones JF, Reber BFX, Catterall WA (1987): Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. PNAS (USA) 84:5478–5482

    Article  Google Scholar 

  • Valverius P, Hoffman PL, Tabakoff B (1987): Effect of ethanol on mouse cerebral cortical beta-adrenergic receptors. Mol Pharmacol 32:217–222

    Google Scholar 

  • Vandaele S, Fosset M, Galizzi J, Lazdunski M (1987): Monoclonal antibodies that coimmunoprecipitate the 1,4-dihydropyridine and phenylalkylamine receptor and reveal the Ca+2 channel structure. Biochemistry 26:5–9

    Article  Google Scholar 

  • Waring AJ, Rottenberg H, Ohnishi T, Rubin E (1981): Membranes and phospholipids of liver mitochondria from chronic alcoholic rats are resistant to membrane disordering by alcohol. Proc Natl Acad Sci 78(4):2582–2586

    Article  Google Scholar 

  • Waring AJ, Rottenberg H, Ohnishi T, Rubin E (1982): The effect of chronic ethanol consumption of temperature-dependent physical properties of liver mitochondria membranes. Arch Biochem Biophys 216(1):51–61

    Article  Google Scholar 

  • Yatani A, Kuntze DL, Brown AM (1988): Effects of dihydropyridine calcium channel modulators on cardiac sodium channels. Am J Physiol 254:H140–H147

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mason, R.P., Moring, J., Herbette, L.G., Meyer, R.E., Shoemaker, W.J. (1991). Probing Molecular Sites of Action for Alcohol’s Acute and Chronic Effects on Synaptoneurosome Membranes: A Potential Tool for Studying Drug-Receptor Interactions. In: Meyer, R.E., Lewis, M.J., Koob, G.F., Paul, S.M. (eds) Neuropharmacology of Ethanol. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1305-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1305-3_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1307-7

  • Online ISBN: 978-1-4757-1305-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics