Probing Molecular Sites of Action for Alcohol’s Acute and Chronic Effects on Synaptoneurosome Membranes: A Potential Tool for Studying Drug-Receptor Interactions

  • R. Preston Mason
  • Jill Moring
  • Leo G. Herbette
  • Roger E. Meyer
  • William J. Shoemaker


Ethanol is active in the central nervous system (CNS), producing a variety of effects when administered acutely. Long-term administration of ethanol produces tolerance and physical dependence. The study of alcohol’s effects on the CNS has been complicated by the absence of a specific binding site that would indicate the primary locus of action for this molecule on the cells of the CNS. Unlike other drugs of abuse such as opiates, psychomotor stimulants and hallucinogens, there is no receptor molecule, reuptake site or ion channel that possesses high affinity binding for ethanol. Historically, Meyer (1906) and Overton (1901) described the solubility of ethanol and its ability to reach rapid equilibrium between the intra- and extracellular environment to explain some of ethanol’s actions on cellular processes and the biophysical state of cells and cellular organelles. The seemingly diverse effects of ethanol on the CNS were explained by a common underlying mechanism: through the distribution of ethanol within the matrix of biological membranes and subsequent alterations in the structure and function of these membranes.


Calcium Channel Antagonist Membrane Bilayer Electron Density Profile Headgroup Region Phospholipid Headgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Affolter H, Coronado R (1985): Agonists of Bay K 8644 and CGP Z8392 Open channels from skeletal muscle transverse tubules. Biophys J 48:341–347CrossRefGoogle Scholar
  2. Affolter H, Coronado R (1986): The sidedness of reconstituted calcium channels from muscle transverse tubules as determined by D-600 and D-890 blockade. Biophys J 49:197aCrossRefGoogle Scholar
  3. Bangham AD, Standish MM, Watkins JC (1965): Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252CrossRefGoogle Scholar
  4. Blair LAC, Levitan ES, Marshall J, Dionee VE, Barnard EA (1988): Single subunits of the GABAA receptor form ion channels with properties of the native receptor. Science 242:577–579CrossRefGoogle Scholar
  5. Blanton M, McCardy E, Gallaher T, Wang HH (1988): Noncompetitive inhibitors reach their binding site in the acetylcholine receptor by two different paths. Mol Pharm 33:634–642Google Scholar
  6. Blaurock AE, King GI (1977): Asymmetric structure of the purple membrane. Science 186:1101–1104CrossRefGoogle Scholar
  7. Braestrup C, Albrechtsen R, Squires RF (1977): High densities of benzodiazepine receptors in human cortical areas. Nature 269:702–704CrossRefGoogle Scholar
  8. Brett RS, Dilger JP, Yland KF (1988): Isoflurane causes “flickering” of the acetylcholine receptor channel: observations using the patch clamp. Anesthesiology 69:161–170CrossRefGoogle Scholar
  9. Britton KT, Ehlers CL, Koob GF (1988): Is ethanol antagonist Ro15–4513 selective for ethanol? Science 239:648–649CrossRefGoogle Scholar
  10. Carvalho CM, Oliveira CR, Lima MP, Leysen JE, Carvalho AP (1989): Partition of Ca+2 antagonists in brain plasma membranes. Biochem Pharmacol 38:2121–2127CrossRefGoogle Scholar
  11. Changeux J, Devillers-Thiery A, Chemouilli P (1984): Acetylcholine receptor: an allosteric protein. Science 225:1335–1345CrossRefGoogle Scholar
  12. Chester DW, Herbette LG, Mason RP, Joslyn AF, Triggle DJ, Koppel DE (1987): Diffusion of dihydropyridine calcium channel antagonists in cardiac sarcolemmal lipid multibilayers. Biophys J 52:1021–1030CrossRefGoogle Scholar
  13. Clark NA, Rothschild KJ, Luipold DA, Simon BA (1980): Surface-induced lamellar orientation of multilayer membrane arrays. Theoretical analysis and a new method with application to purple membrane fragments. Biophys J 31:65–96CrossRefGoogle Scholar
  14. Colvin RA, Ashavaid TF, Herbette LG (1985): Structure-function studies of canine cardiac sarcolemmal membranes. I. Estimation of receptor site densities. Biochim Biophys Acta 812:601–608CrossRefGoogle Scholar
  15. Davidson M, Wilce P, Shanley B (1988): Ethanol increases synaptosomal free calcium concentration. Neurosci Lett 89:165–169CrossRefGoogle Scholar
  16. Dolin S, Little H, Hudspith M, Pagonis C, Littleton J (1987): Increased dihydropyridine-sensitive calcium channels in rat brain may underlie ethanol physical dependence. Neuropharmacology 26:275–279CrossRefGoogle Scholar
  17. Fiehn W, Peter JB, Mead JF, Gan-Elepano M (1971): Lipids and fatty acids of sarcolemma, sarcoplasmic reticulum, and mitochondria from rat skeletal muscle. J Biol Chem 248:5617–5620Google Scholar
  18. Franks NP, Lieb WR (1981): X-ray and neutron diffraction studies of lipid bilayers. In: Liposomes: From Physical Structure to Therapeutic Applications. Knight et al., eds. New York: Elsevier/North-Holland Biomedical Press, pp 243–271Google Scholar
  19. Gage PW, Robertson B (1985): Prolongation of inhibitory postsynaptic currents by pentobarbitone, halothane and ketamine in CA 1 pyramidal cells in rat hippocampus. Br J Pharmacol 85:675–681CrossRefGoogle Scholar
  20. Giraudat J, Dennis M, Heidmann T, Haumont PY, Lederer R, Changeux JP (1987) : Structure of the high-affinity site for noncompetitive blockers of the acetycholine receptor. [3H] chlorpromazine labels homologous residues in the beta and delta chains. Biochemistry 26:2410–2418CrossRefGoogle Scholar
  21. Goldstein DB, Chin JH, Lyon RC (1982): Ethanol disordering of spin-labeled mouse brain membranes: correlation with genetically determined ethanol sensitivity of mice. Proc Natl Acad Sci 79:4231–4233CrossRefGoogle Scholar
  22. Gordon ER, Rochman J, Arai M, Lieber CS (1982): Lack of correlation between hepatic mitochondria membrane structure and functions in ethanol-fed rats. Science 216:1320–1321CrossRefGoogle Scholar
  23. Greenberg DA, Carpenter CL, Messing RO (1987): Ethanol-induced component of 45Ca2+ uptake in PC12 cells is sensitive to Ca2+ channel modulating drugs. Brain Res 410:143–146CrossRefGoogle Scholar
  24. Harris RA, Hitzemann RJ (1981): Membrane fluidity and alcohol actions. Curr Alcohol 8:379–404Google Scholar
  25. Harris RA, Hood WF (1980): Inhibition of synaptosomal calcium uptake by ethanol. J Pharmacol Exp Ther 213:562–568Google Scholar
  26. Harris DP, Sinclair JG (1984): Ethanol-GABA interactions at the rat purkinje cell. Gen Pharmacol 15:449–454CrossRefGoogle Scholar
  27. Heidmann T, Changeux J-P (1984): Time-resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformation. PNAS (USA) 81:1897–1901CrossRefGoogle Scholar
  28. Herbette LG, Chester DW, Rhodes DG (1986): Structural analysis of drug molecules in biological membranes. Biophys J 49:91–94CrossRefGoogle Scholar
  29. Herbette LG, Katz AM, Sturtevant JM (1983): Comparisons of the interactions of proparanol and timolol with model and biological membrane systems. Mol Pharm 24:259–269Google Scholar
  30. Herbette LG, MacAlister T, Ashavaid TF, Colvin RA(1985a): Structure-function studies of canine cardiac sarcolemmal membranes. II. Structural organization of the sarcolemmal membrane as determined by electron microscopy and lamellar x-ray diffraction. Biochim Biophys Acta 812:609–623CrossRefGoogle Scholar
  31. Herbette LG, Marquardt J, Scarpa A, Blasie JK (1977): A direct analysis of lamellar x-ray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum. Biophys J 20:245–272CrossRefGoogle Scholar
  32. Herbette LG, Napolitano CA, Messineo FC, Katz AM (1985b): Interaction of amphiphilic molecules with biological membranes. In Advances in Myocardiology. Vol. 5. Harris P, Poole-Wilson PA, eds. New York: Plenum Publishing Corp. pp 333–346Google Scholar
  33. Herbette LG, Van Erve YMH, Rhodes DG (1989): Interaction of 1,4-dihydropyridine calcium channel antagonists with biological membranes: lipid bilayer partitioning could occur before drug binding to receptors. J Mol Cell Cardiol 21:187–201CrossRefGoogle Scholar
  34. Hille KB (1977): Local anesthetics: hydrophilic and hydrophobic pathways for the drug receptor reaction. J Gen Physiol 69:497–515CrossRefGoogle Scholar
  35. Hollingsworth EB, McNeal ET, Burton JL, Williams RJ, Daly JW, Creveling CR (1985): Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclicadenosine 3′:5′-monophosphategenerating systems, receptors, and enzymes. J Neurosci 5:2240–2253Google Scholar
  36. Hudspith MJ, Brennan CH, Charles S, Littleton JM (1987): Dihydropyridinesensitive Ca2+ channels and inositol phospholipid metabolism in ethanol physical dependence. Ann NY Acad Sci 492:156–169CrossRefGoogle Scholar
  37. Hudspith MJ, Littleton JM (1986): Enhanced effect of Bay K 8644 on inositol phospholipid breakdown in brain slices from ethanol dependent rats. Br J Pharmacol 88:623PGoogle Scholar
  38. King GI, White SH (1985): Molecular packing and area compressibility of lipid bilayers. Proc Natl Acad Sci (USA) 82:6532–6536CrossRefGoogle Scholar
  39. Kirschner DA, Sidman RL (1976): X-ray diffraction study of myelin structure in immature and mutant mice. Biochim Biophys Acta 448:73–87CrossRefGoogle Scholar
  40. Kobilka B, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ (1988): Chimeric alpha2-, beta2 adrenergic receptors: delineation of domains in- volved in effector coupling and ligand binding specificity. Science 240:1310–1316CrossRefGoogle Scholar
  41. Kokubun S, Reuter H (1984): Dihydropyridine derivatives prolong the open state of Ca++ channel in cultured cardiac cells. Proc Natl Acad Sci (USA) 81:4824–4827CrossRefGoogle Scholar
  42. Leslie SW, Barr E, Chandler J, Farrar RP (1983): Inhibition of fast- and slowphase depolarization-dependent synaptosomal calcium uptake by ethanol. J Pharmacol Exp Ther 225:571–575Google Scholar
  43. Little HJ, Dolin S, Halsey MJ (1986): Calcium channel antagonists decrease ethanol withdrawal syndrome. Life Sci 39:2059–2065CrossRefGoogle Scholar
  44. Little HJ, Dolin SJ (1987): Lack of tolerance to ethanol after concurrent administration of nitrendipine. Brit J Pharmacol 92:606PGoogle Scholar
  45. Littleton JM, Little HJ (1988): Dihydropyridine-sensitive Ca2+ channels in brain are involved in the central nervous system hyperexcitability associated with alcohol withdrawal states. Ann NY Acad Sci 522:199–202CrossRefGoogle Scholar
  46. Lyon RC, Goldstein DB (1983): Changes in synaptic membrane order associated with chronic ethanol treatment inmice. Mol Pharmacol 23:86–91Google Scholar
  47. Mancillas JR, Siggins GR, Bloom FE (1986): Systemic ethanol: selective enhancement of responses to acetylcholine and somatostatin in hippocampus. Science 231:161–163CrossRefGoogle Scholar
  48. Mason RP, Gonye GE, Chester DW, Herbette LG (1989a): Partitioning and location of Bay K 8644, 1,4-dihydropyridine calcium channel agonist, in model and biological lipid membranes. Biophys J 55:769–778CrossRefGoogle Scholar
  49. Mason RP, Campbell SF, Wang S-D, Herbette LG (1989b): Comparison of location and binding for the positively charged 1,4-dihydropyridine calcium channel antagonist amlodine with uncharged drug of this class in cardiac membranes. Mol Pharmacol 36:634–640Google Scholar
  50. Mason RP, Chester DW (1989): Diffusional Dynamics of an active rhodaminelabeled 1,4-dihydropyridine in sarcolemmal lipid multibilayers. Biophys J 56:1193–1201CrossRefGoogle Scholar
  51. Mason RP, Moring J, Herbette LG (1990): A molecular model involving the membrane bilayer in the binding of lipid soluble drugs to their receptors in heart and brain. Nucl Med Biol 17:13–33Google Scholar
  52. McCloskey M, Poo M-M (1986): Rates of membrane associated reactions: reduction in demensionality revisited. J Cell Biol 102:88–96CrossRefGoogle Scholar
  53. Messing RO, Carpenter CL, Diamond I, Greenberg DA (1986): Ethanol regulates calcium channels in clonal neural cells. Proc Natl Acad Sci (USA) 83:6213–6215CrossRefGoogle Scholar
  54. Meyer HH (1906): Harvey Lectures. pp 11–17Google Scholar
  55. Mohler H, Okada T (1977): Benzodiazepine receptor: demonstration in the central nervous system. Science 198:849–851CrossRefGoogle Scholar
  56. Mohler H, Sieghert W, Richards JG, Hunkeler W (1984): Photoaffinity labeling of benzodiazepine receptors with a partial inverse agonist. Eur J Pharmacol 102:191–192CrossRefGoogle Scholar
  57. Moody MF (1963): X-ray diffraction pattern of nerve myelin: a method for determining the phases. Science 142:1173–1174CrossRefGoogle Scholar
  58. Moring J, Shoemaker WJ, Skita V, Mason RP, Hayden HC, Salomon RM, Herbette LG (1990): Rat cerebral cortical synaptoneurosomal membranes. Structure and interactions with imidazobenzodiazepine and 1,4-dihydropyridine calcium channel drugs. Biophys J 58:513–531CrossRefGoogle Scholar
  59. Muller WE (1987): The Benzodiazepine Receptor. Cambridge University PressGoogle Scholar
  60. Overton E (1901): Studien über die Nar Kose. Jena: FisherGoogle Scholar
  61. Panza G, Grebb JA, Sanna E, Wright Jr. AG, Hanbauer I (1985): Evidence for down-regulation of 3H-nitrendipine recognition sites in mouse brain after long-term treatment with nifedipine or verapamil. Neurophamacology 24:1113–1117CrossRefGoogle Scholar
  62. Peper K, Bradley RJ, Dreyer F (1982): The acetylcholine receptor at the neuromuscular junction. Physiol Rev 62:1271–1340Google Scholar
  63. Polokoff MA, Simon TJ, Harris RA, Simon FR, Iwahashi M (1985): Chronic ethanol increases liver plasma membrane fluidity. Biochemistry 24:3114–3120CrossRefGoogle Scholar
  64. Puddey IB, Beilin LJ, Vandongen R (1986): Lack of effect of acute alcohol ingestion on erythrocyte NA+, K+ ATPase activity or passive sodium uptake in vivo in man. J Stud Alcohol 47(6)Google Scholar
  65. Renau-Piqueras J, Miragall F, Marques A, Baguena-Cervellera R, Guerri C (1987): Chronic ethanol consumption affects filipin-cholesterol complexes and intramembranous particles of synaptosomes of rat brain cortex. Alcholism: Clin Exp Res 11:486–493CrossRefGoogle Scholar
  66. Rhodes DG, Sarmiento JG, Herbette LG (1985): Kinetics of binding of membrane-active drugs to receptor sites. Diffusion limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site. Mol Pharmacol 27:612–623Google Scholar
  67. Rius R, Bergamaschi S, Di Fonso F, Govoni S, Trabucchi M, and Rossi F (1987): Acute ethanol effect on calcium antagonist binding in rat brain. Brain Res 402:359–361CrossRefGoogle Scholar
  68. Rottenberg H, Waring A, Rubin E, reply by Gordon ER. (1984): Alcohol-induced tolerance in mitochondrial membranes. Science 223:193–194,CrossRefGoogle Scholar
  69. Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ranachandran J, Reale V, Glencorse TA, Seeburg PH, Barnard EA (1987): Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328:221–227CrossRefGoogle Scholar
  70. Sedzik J, Toews AD, Blaurock AE, Morell P (1984): Resistance to disruption of multilamellar fragments of central nervous system myelin. J Neurochem 43(5):1415–1420CrossRefGoogle Scholar
  71. Sieghart W, Eichinger A, Riederer P, Jellinger K (1985): Comparison of benzodiazepine receptor binding in membranes from human or rat brain. Neuropharmacology 24:751–759CrossRefGoogle Scholar
  72. Stamatoff JB, Krimm S (1976): Phase determination of x-ray reflections for membrane-type systems with constant fluid density. Biophys J 16:503–516CrossRefGoogle Scholar
  73. Suzdak PD, Glowa JR, Crawley JN, Skolnick P, and Paul SM (1988): Response. Science 239:649–650CrossRefGoogle Scholar
  74. Suzdak PD, Glowa JR, Crawley JN, Schwartz RD, Skolnick P, Paul SM (1986b): A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science 234:243–1247CrossRefGoogle Scholar
  75. Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1986a): Ethanol stimulates γ -aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci (USA) 83:4071–4075CrossRefGoogle Scholar
  76. Sweetnam P, Nestler E, Gallombardo P, Brown S, Duman R, Bracha HS, Tallman J (1987): Comparison of the molecular structure of GABA/benzodiazepine receptors purified from rat and human cerebellum. Mol Brain Res 2:223–233CrossRefGoogle Scholar
  77. Szabo G, Hoffman PL, Tabakoff B (1988): Forskolin promotes the development of ethanol tolerance in 6-hydroxydopamine-treated mice. Life Sci 42:615–621CrossRefGoogle Scholar
  78. Tabakoff B, Hoffman PL, Liljequist S (1987): Effects of ethanol on the activity of brain enzymes. Enzyme 37:70–86Google Scholar
  79. Takahashi M, Seagar MJ, Jones JF, Reber BFX, Catterall WA (1987): Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. PNAS (USA) 84:5478–5482CrossRefGoogle Scholar
  80. Valverius P, Hoffman PL, Tabakoff B (1987): Effect of ethanol on mouse cerebral cortical beta-adrenergic receptors. Mol Pharmacol 32:217–222Google Scholar
  81. Vandaele S, Fosset M, Galizzi J, Lazdunski M (1987): Monoclonal antibodies that coimmunoprecipitate the 1,4-dihydropyridine and phenylalkylamine receptor and reveal the Ca+2 channel structure. Biochemistry 26:5–9CrossRefGoogle Scholar
  82. Waring AJ, Rottenberg H, Ohnishi T, Rubin E (1981): Membranes and phospholipids of liver mitochondria from chronic alcoholic rats are resistant to membrane disordering by alcohol. Proc Natl Acad Sci 78(4):2582–2586CrossRefGoogle Scholar
  83. Waring AJ, Rottenberg H, Ohnishi T, Rubin E (1982): The effect of chronic ethanol consumption of temperature-dependent physical properties of liver mitochondria membranes. Arch Biochem Biophys 216(1):51–61CrossRefGoogle Scholar
  84. Yatani A, Kuntze DL, Brown AM (1988): Effects of dihydropyridine calcium channel modulators on cardiac sodium channels. Am J Physiol 254:H140–H147Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • R. Preston Mason
  • Jill Moring
  • Leo G. Herbette
  • Roger E. Meyer
  • William J. Shoemaker

There are no affiliations available

Personalised recommendations