The Effects of Hormonal Factors on Cardiac Protein Turnover

  • Peter H. Sugden
Part of the Advances in Myocardiology book series (ADMY)


The purpose of this chapter is to describe some of the hormonal factors that have been suggested to influence cardiac protein turnover. Because it is easier technically and interpretatively to carry out experiments in vitro, much of the work described here is based on this approach. It is important, however, to attempt to relate phenomena observed in vitro to the in vivo situation. This can be done by attempting to simulate in vivo conditions (e.g., hormone and fuel concentrations, cardiac workload) in experiments in vitro or by examining the effects in vivo of substances known to have effects in vitro. In many cases, there has not yet been sufficient time for all these experiments to have produced conclusive results, although this omission should be rectified in the future.


Protein Synthesis Protein Degradation Cardiac Hypertrophy Diabetic Animal Extensor Digitorum Longus Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morgan, H. E., Rannels, D. E., and McKee, E. E. 1979. Protein metabolism of the heart. Handb. Physiol. Sect. 2: Cardiovasc. Syst. 1:845–871.Google Scholar
  2. 2.
    Schreiber, S. S., Evans, C. D., Oratz, M., and Rothschild, M. A. 1981. Protein synthesis and degradation in cardiac stress. Circ. Res. 48:601–611.PubMedCrossRefGoogle Scholar
  3. 3.
    Rannels, D. E., Wartell, S. A., and Watkins, C. L. 1982. The measurement of protein synthesis in biological systems. Life Sci. 30:1679–1690.PubMedCrossRefGoogle Scholar
  4. 4.
    Chua, B. H. L., Siehl, D. L., and Morgan, H. E. 1980. A role for leucine in regulation of protein synthesis in working rat hearts. Am. J. Physiol. 239:E510—E514.PubMedGoogle Scholar
  5. 5.
    Morgan, H. E., Chua, B. H. L., Fuller, E. O., and Siehl, D. 1980. Regulation of protein synthesis and degradation during in vitro cardiac work. 1980. Am. J. Physiol. 238:E431–E442.PubMedGoogle Scholar
  6. 6.
    Sugden, P. H. 1980. Metabolism of aromatic amino acids by the rat heart and diaphragm. FEBS Lett. 114:127–131.PubMedCrossRefGoogle Scholar
  7. 7.
    Williams, I. H., Sugden, P. H., and Morgan, H. E. 1981. Use of aromatic amino acids as monitors of protein turnover. Am. J. Physiol. 240:E677—E681.PubMedGoogle Scholar
  8. 8.
    Rannels, D. E., Kao, R., and Morgan, H. E. 1975. Effect of insulin on protein turnover in heart muscle. J. Biol. Chem. 250:1694–1701.PubMedGoogle Scholar
  9. 9.
    Waterlow, J. C., Garlick, P. J., and Millward, D. J. 1978. Protein Turnover in Mammalian Tissues and the Whole Body. North-Holland, Amsterdam.Google Scholar
  10. 10.
    Henshaw, E. C., Hirsch, C. A., Morton, B. E., and Hiat, H. H. 1971. Control of protein synthesis in mammalian tissues through changes in ribosome activity. J. Biol. Chem. 246:436–446.PubMedGoogle Scholar
  11. 11.
    McNurlan, M. A., Tomkins, A. M., and Garlick, P. J. 1979. The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochem. J. 178:373–379.PubMedGoogle Scholar
  12. 12.
    Garlick, P. J., McNurlan, M. A., and Preedy, V. R. 1980. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem. J. 192:719–723.PubMedGoogle Scholar
  13. 13.
    Millward, D. J., Bates, P. C., Grimble, G. K., Brown, J. G., Nathan, M., and Rennie, M. J. 1980. Quantitative importance of non-skeletal muscle sources of NT-methylhistidine in urine. Biochem. J. 190:225–228.PubMedGoogle Scholar
  14. 14.
    Wassner, S. J., and Li, J. B. 1982. NT-Methylhistidine release: Contributions of rat skeletal muscle, GI tract and skin. Am. J. Physiol. 243:E293-E297.PubMedGoogle Scholar
  15. 15.
    Rabinowitz, M., and Zak, R. 1972. Biochemical and cellular changes in cardiac hypertrophy. Annu. Rev. Med. 23:245–261.PubMedCrossRefGoogle Scholar
  16. 16.
    Zak, R., and Rabinowitz, M. 1979. Molecular aspects of cardiac hypertrophy. Annu. Rev. Physiol. 41:539–552.PubMedCrossRefGoogle Scholar
  17. 17.
    Manchester, K. L., and Wool, I. G. 1963. Insulin and incorporation of amino acids into protein. 2. Accumulation and incorporation studies with the perfused rat heart. Biochem. J. 89:202–209.PubMedGoogle Scholar
  18. 18.
    Morgan, H. E., Jefferson, L. S., Wolpert, E. B., and Rannels, D. E. 1971. Regulation of protein synthesis in heart muscle. II. Effect of amino acid levels and insulin on ribosomal aggregation. J. Biol. Chem. 246:2163–2170.PubMedGoogle Scholar
  19. 19.
    Sender, P. M., and Garlick, P. J. 1973. Synthesis rates of protein in the Langendorff perfused rat heart in the presence and absence of insulin, and in the working heart. Biochem. J. 132:603–608.PubMedGoogle Scholar
  20. 20.
    Clarke, C. M., Jr. 1971. The stimulation by insulin of amino acid uptake and protein synthesis in the isolated fetal rat heart. Biol. Neonate. 19:379–388.CrossRefGoogle Scholar
  21. 21.
    Hait, G., Kypson, J., and Massih, R. 1972. Amino acid incorporation into myocardium: Effect of insulin, glucagon, and dibutyryl 3′,5′-AMP. Am. J. Physiol. 222:404–408.PubMedGoogle Scholar
  22. 22.
    Airhart, J., Arnold, J. A., Stirewalt, W. S., and Low, R. B. 1982. Insulin stimulation of protein synthesis in cultured skeletal and cardiac muscle cells. Am. J. Physiol. 248:C81–C86.Google Scholar
  23. 23.
    Kipnis, D. M., and Noall, M. W. 1958. Stimulation of amino acid transport by insulin in the isolated rat diaphragm. Biochim. Biophys. Acta 28:226–227.PubMedCrossRefGoogle Scholar
  24. 24.
    Wool, I. G., and Krahl, M. E. 1959. Incorporation of C14-amino acids into protein of isolated diaphragms: An effect of insulin independent of glucose entry. Am. J. Physiol. 196:961–964.PubMedGoogle Scholar
  25. 25.
    Davey, P. J., and Manchester, K. L. 1969. Isolation of labelled aminoacyl transfer RNA from muscle: Studies of the entry of labelled amino acids into acyl transfer RNA linkage in situ and its control by insulin. Biochim. Biophys. Acta 182:85–97.PubMedCrossRefGoogle Scholar
  26. 26.
    Manchester, K. L. 1970. The control by insulin of amino acid accumulation by muscle. Biochem. J. 117:457–465.PubMedGoogle Scholar
  27. 27.
    Manchester, K. L. 1970. Insulin and protein synthesis. Biochem. Actions Horm. 1:267–320.CrossRefGoogle Scholar
  28. 28.
    Morgan, H. E., Henderson, M. J., Regen, D. M., and Park, C. R. 1961. Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J. Biol. Chem. 236:253–261.PubMedGoogle Scholar
  29. 29.
    Chain, E. B., and Sender, P. M. 1973. Protein synthesis by perfused hearts from normal and insulin-deficient rats. Effects of insulin in the presence of glucose and after depletion of glucose, glucose-6-phosphate and glycogen. Biochem. J. 132:593–601.PubMedGoogle Scholar
  30. 30.
    Rannels, D. E., Hjalmarson, A. C., and Morgan, H. E. 1974. Effects of noncarbohydrate substrates on protein synthesis in muscle. Am. J. Physiol. 226:528–539.PubMedGoogle Scholar
  31. 31.
    Smith, D. M., and Sugden, P. H. 1983. Differential rates of protein synthesis in vitro and RNA contents in rat heart ventricular and atrial muscle. Biochem. J. 214:497–502.PubMedGoogle Scholar
  32. 32.
    Manchester, K. L., and Young, F. G. 1959. Hormones and protein synthesis in isolated rat diaphragm. J. Endocrinol. 18:381–394.PubMedCrossRefGoogle Scholar
  33. 33.
    Manchester, K. L., Randle, P. J., and Young, F. G. 1959. An insulin assay based on the incorporation of labelled glycine into protein of isolated rat diaghragm. J. Endocrinol. 19:249–262.CrossRefGoogle Scholar
  34. 34.
    Frayn, K. N., and Maycock, P. F. 1979. Regulation of protein metabolism by a physiological concentration of insulin in mouse soleus and extensor digitorum longus muscles: Effect of starvation and scald injury. Biochem. J. 184:323–330.PubMedGoogle Scholar
  35. 35.
    Garlick, P. J., Fern, M., and Preedy, V. R. 1983. The effect of insulin infusion and food intake on muscle protein synthesis in postabsorptive rats. Biochem. J. 210:669–676.PubMedGoogle Scholar
  36. 36.
    Sugden, P. H., and Smith, D. M. 1982. The effects of glucose, acetate, lactate and insulin on protein degradation in the perfused rat heart. Biochem. J. 206:467–472.PubMedGoogle Scholar
  37. 37.
    Chua, B., Siehl, D. L., and Morgan, H. E. 1979. Effect of leucine and metabolites of branched chain amino acids on protein turnover in heart. J. Biol. Chem. 254:R35R–8362.Google Scholar
  38. 38.
    Chua, B., Kao, R. L., Rannels, D. E., and Morgan, H. E. 1979. Inhibition of protein degradation by anoxia and ischemia in perfused rat hearts. J. Biol. Chem. 254:6617–6623.PubMedGoogle Scholar
  39. 39.
    Smith, D. M., and Sugden, P. H. 1983. Effect of insulin and lack of effect of workload and hypoxia on protein degradation in the perfused working rat heart. Biochem. J. 210:55–61.PubMedGoogle Scholar
  40. 40.
    Farah, A. E., and Alousi, A. A. 1981. The actions of insulin on cardiac contractility. Life Sci. 29:975–1000.PubMedCrossRefGoogle Scholar
  41. 41.
    Regan, T. J., Lyons, M. M., Ahmed, S. S., Levinson, G. E., Oldewurtel, H. A., Ahmad, M. R., and Haider, B. 1977. Evidence of cardiomyopathy in familial diabetes mellitus. J. Clin. Invest. 60:885–899.CrossRefGoogle Scholar
  42. 42.
    Sanderson, J. E., Brown, D. J., Rivellese, A., and Kohner, E. 1978. Diabetic cardiomyopathy? An echocardiographic study of young diabetics. Br. Med. J. 1:404–407.PubMedCrossRefGoogle Scholar
  43. 43.
    Regan, T. M., Ettinger, P. O., Khan, M. I., Jesrani, M. U., Lyons, M. M., Oldewurtel, H. A., and Weber, M. 1974. Altered myocardial function and metabolism in chronic diabetes mellitus without ischemia in dogs. Circ. Res. 35:222–237.CrossRefGoogle Scholar
  44. 44.
    Miller, T. B. 1979. Cardiac performance of isolated perfused hearts from alloxan diabetic rats. Am. J. Physiol. 236:H808-H812.PubMedGoogle Scholar
  45. 45.
    Fein, F. S., Kornstein, L. B., Strobeck, J. E, Capasso, J. M., and Sonnenblick, E. H. 1980. Altered myocardial mechanics in diabetic rats. Circ. Res. 47:922–933.PubMedCrossRefGoogle Scholar
  46. 46.
    Penpargkul, S., Schiable, T., Yipintsoi, T., and Scheuer, J. 1980. The effects of diabetes on performance and metabolism of rat hearts. Circ. Res. 47:911–921.PubMedCrossRefGoogle Scholar
  47. 47.
    Schiable, T. F., Malhotra, A., Bauman, W. A., and Scheuer, J. 1983. Left ventricular function after chronic insulin treatment in diabetic and normal rats. J. Mol. Cell. Cardiol. 15:445–458.CrossRefGoogle Scholar
  48. 48.
    Goodman, M. N., and Hazelwood, R. L. 1971. Influence of fasting and alloxan diabetes on rat cardiac actomyosin and subcellular phosphorus levels. Proc. Soc. Exp. Biol. Med. 137:614–618.CrossRefGoogle Scholar
  49. 49.
    Dahlmann, B., Metzinger, H., and Reinauer, H. 1982. Studies on proteolytic activities in heart muscle of diabetic rats. Diabete Metab. 2:129–135.Google Scholar
  50. 50.
    Rannels, D. W., Jefferson, L. S., Hjalmarson, Å. C., Wolpert, E. B., and Morgan, H. E. 1970. Maintenance of protein synthesis in hearts of diabetic animals. Biochem. Biophys. Res. Commun. 40:1110–1116.PubMedCrossRefGoogle Scholar
  51. 51.
    Jefferson, L. S. 1980. Role of insulin in the regulation of protein synthesis. Diabetes 29:487–496.PubMedGoogle Scholar
  52. 52.
    Ernst, V., Levin, D. H., and London, I. M. 1978. Evidence that glucose-6-phosphate regulates protein synthesis initiation in reticulocyte lysates. J. Biol. Chem. 253:7163–7172.PubMedGoogle Scholar
  53. 53.
    Ravid, K., Diamant, P., and Avi-Dor, Y. 1980. Glucose dependent stimulation of protein synthesis in cultured heart cells: Possible involvement of the pentose phosphate pathway. FEBS Lett. 119:20–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Pain, V. M., and Garlick, P. J. 1974. Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. J. Biol. Chem. 249:4510–4514.PubMedGoogle Scholar
  55. 55.
    Wool, I. G., Stirewalt, W. S., Kurihara, K., Low, R. B., Bailey, P., and Oyer, D. 1968. Mode of action of insulin in the regulation of protein biosynthesis in muscle. Recent Prog. Horm. Res. 24:139–208.PubMedGoogle Scholar
  56. 56.
    Williams, I. H., Chua, B. H. L., Sahms, R. H., Siehl, D., and Morgan, H. E. 1980. Effects of diabetes on protein turnover in cardiac muscle. Am. J. Physiol. 239: E178–E185.PubMedGoogle Scholar
  57. 57.
    Pain, V. M. 1973. Effect of streptozotocin diabetes on the ability of muscle cell sap to support protein synthesis by ribosomes in cell-free systems. Biochim. Biophys. Acta 308:180–187.PubMedCrossRefGoogle Scholar
  58. 58.
    Dillman, W. H. 1980. Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 29:579–582.Google Scholar
  59. 59.
    Garber, D. W., and Neely, J. R. 1983. Decreased myocardial function and myosin ATPase in hearts from diabetic rats. Am. J. Physiol. 244:H586-H591.PubMedGoogle Scholar
  60. 60.
    Garber, D. W., Everett, A. W., and Neely, J. R. 1983. Cardiac function and myosin ATPase in diabetic rats treated with insulin, T3 and T4 . Am. J. Physiol. 244:H592–H598.PubMedGoogle Scholar
  61. 61.
    Cummins, P. 1983. Contractile proteins in muscle disease. J. Muscle Res. Cell Motil. 4:5–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Griffin, W. S. T., and Wildenthal, K. 1978. Myofibrillar alkaline protease activity in rat heart and its responses to some interventions. J. Mol. Cell. Cardiol. 10:669–676.PubMedCrossRefGoogle Scholar
  63. 63.
    Mayer, M., Amin, R., Milholland, R. M., and Rosen, F. 1976. Possible significance of myofibrillar protease in muscle catabolism: Enzyme activity in dystrophic, tumor-bearing, and glucocorticoid-treated animals. Exp. Mol. Pathol. 25:9–19.PubMedCrossRefGoogle Scholar
  64. 64.
    Mayer, M., Amin, R., and Shafrir, E. 1974. Rat myofibrillar protease: Enzyme properties and adaptive changes in conditions of muscle protein degradation. Arch. Biochem. Biophys. 161:20–25.CrossRefGoogle Scholar
  65. 65.
    Clark, M. G., Beinlich, C. J., McKee, E. E., Lins, J. A., and Morgan, H. E. 1980. Relationship between alkaline proteolytic activity and protein degradation in rat heart. Fed. Proc. Fed. Am. Soc. Exp. Biol. 39:26–30.Google Scholar
  66. 66.
    McKee, E. E., Clark, M. G., Beinlich, C. J., Lins, J. A., and Morgan, H. E. 1979. Neutralalkaline proteases and protein degradation in rat heart. J. Mol. Cell. Cardiol. 11:1033–1051.PubMedCrossRefGoogle Scholar
  67. 67.
    Rannels, D. E., Pegg, A. E., Rannels, S. R., and Jefferson, L. S. 1978. Effect of starvation on initiation of protein synthesis in skeletal muscle and heart. Am. J. Physiol. 235:E126–E133.PubMedGoogle Scholar
  68. 68.
    McNurlan, M. A., Fern, E. B., and Garlick, P. J. 1982. Failure of leucine to stimulate protein synthesis in vivo. Biochem. J. 204:831–838.PubMedGoogle Scholar
  69. 69.
    Crie, J. S., Sanford, C. F., and Wildenthal, K. 1980. Influence of starvation and refeeding on cardiac protein degradation in rats. J. Nutr. 110:22–27.PubMedGoogle Scholar
  70. 70.
    Curfman, G. D., O’Hara, D. S., Hopkins, B. E., and Smith, T. W. 1980. Suppression of myocardial protein degradation in the rat during fasting: Effects of insulin, glucose and leucine. Circ. Res. 46:581–589.PubMedCrossRefGoogle Scholar
  71. 71.
    Wildenthal, K., Poole, A. R., and Dingle, J. T. 1975. Influence of starvation on the activities and localization of cathepsin D and other lysosomal enzymes in hearts of rabbits and mice. J. Mol. Cell. Cardiol. 7:841–855.PubMedCrossRefGoogle Scholar
  72. 72.
    Soderling T. R., and Park, C. 1974. Recent uvadvances in glycogeng 1d1metabolism. Adv. Cyclic Nucleotide Res. 4:283–333.PubMedGoogle Scholar
  73. 73.
    Sugden, M. C., Sharples, S. C., and Randle, P. J. 1976. Carcass glycogen as a potential source of glucose during short-term starvation. Biochem. J. 160:817–819.PubMedGoogle Scholar
  74. 74.
    Jefferson, L. S., Rannels, D. E., Munger, B. L., and Morgan, H. E. 1974. Insulin in the regulation of protein turnover in heart and skeletal muscle. Fed. Proc. Fed. Am. Soc. Exp. Biol. 33:1098–1104.Google Scholar
  75. 75.
    Jefferson, L. S., Li, J. B., and Rannels, S. R. 1977. Regulation by insulin of amino acid release and protein turnover in the perfused rat hemicorpus. J. Biol. Chem. 252:1476–1483.PubMedGoogle Scholar
  76. 76.
    Millward, D. J., Garlick, P. J., Nnanyelugo, D. O., and Waterlow, J. C. 1976. The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass. Biochem. J. 156:185–188.PubMedGoogle Scholar
  77. 77.
    Randle, P. J., and Tubbs, P. K. 1979. Carbohydrate and fatty acid metabolism. Handb. Physiol. Sect. 2: Cardiovasc. Syst. 1:805–844.Google Scholar
  78. 78.
    Young, V. R. 1970. The role of skeletal and cardiac muscle in the regulation of protein metabolism. Mamm. Protein Metab. 4:585–674.Google Scholar
  79. 79.
    Odedra, B. R., Dalal, S. S., and Millward, D. J. 1982. Muscle protein synthesis in the streptozotocin-diabetic rat: A possible role for corticosterone in the insensitivity to insulin infusion in vivo. Biochem. J. 202:363–368.PubMedGoogle Scholar
  80. 80.
    Tomas, F. M., Munro, H. N., and Young, V. R. 1978. Effect of glucocorticoid administration on the rate of muscle protein breakdown in vivo in rats, as measured by urinary excretion of NT methylhistidine. Biochem. J. 178:139–146.Google Scholar
  81. 81.
    Rannels, S. R., Rannels, D. E., Pegg, A. E., and Jefferson, L. S. 1978. Glucocorticoid effects on peptide chain initiation in skeletal muscle and heart. Am. J. Physiol. 235: E134–E139.PubMedGoogle Scholar
  82. 82.
    Griffin, E. E., and Wildenthal, K. 1978. Regulation of cardiac protein balance by hydrocortisone: Interaction with insulin. Am. J. Physiol. 234:E306–313.PubMedGoogle Scholar
  83. 83.
    Sanford, C. F., Griffin, E. E., and Wildenthal, K. 1978. Synthesis and degradation of myocardial protein during the development and regression of thyroxine-induced cardiac hypertrophy in rats. Circ. Res. 43:688–694.PubMedCrossRefGoogle Scholar
  84. 84.
    Wildenthal, K., and Mueller, E. A. 1974. Increased myocardial cathepsin D activity during regression of thyrotoxic cardiac hypertrophy. Nature (London) 249:478–479.CrossRefGoogle Scholar
  85. 85.
    Goodkind, M. J., Damback, G. E., Thyrum, P. T., and Luchi, R. J. 1974. Effect of thyroxine on ventricular myocardial contractility and ATPase activity in guinea pigs. Am. J. Physiol. 226:66–72.PubMedGoogle Scholar
  86. 86.
    Morkin, E. 1979. Stimulation of cardiac myosin adenosine triphosphatase in thyrotoxicosis. Circ. Res. 44:1–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Hoh, J. F. Y., McGrath, P. A., and Hale, P. T. 1978. Electrophoretic analysis of multiple forms of rat cardiac myosin: Effects of hypophysectomy and thyroxine replacement. J. Mol. Cell. Cardiol. 10:1053–1076.PubMedCrossRefGoogle Scholar
  88. 88.
    Hoh, J. F. Y., and Egerton, L. J. 1979. Action of triiodothyronine on the synthesis of rat ventricular myosin isoenzyme. FEBS Lett. 101:143–148.PubMedCrossRefGoogle Scholar
  89. 89.
    Buccino, R. A., Spann, J. F., Pool, P. E., Sonnenblick, E. H., and Braunwald, E. 1967. Influence of the thyroid state on the intrinsic contractile properties and energy stores of the myocardium. J. Clin. Invest. 46:1669–1682.PubMedCrossRefGoogle Scholar
  90. 90.
    Taylor, R. R., Covell, J. W., and Ross, R. J. 1969. Influences of the thyroid state on left ventricular tension-velocity relations in the intact sedated dog. J. Clin. Invest. 48:775–784.PubMedCrossRefGoogle Scholar
  91. 91.
    Hjalmarson, Å. C., Rannels, D. E., Kao, R., and Morgan, H. E. 1975. Effects of hypophysectomy, growth hormone and thyroxine on protein turnover in heart. J. Biol. Chem. 250:4556–4561.PubMedGoogle Scholar
  92. 92.
    Kao, R., Rannels, D. E., Whitman, V., and Morgan, H. E. 1978. Factors accounting for the growth and atrophy of the heart. Recent Adv. Stud. Cardiac Struct. Metab. 12:105–113.Google Scholar
  93. 93.
    Earl, D. C. N., and Korner, A. 1966. Effect of rat hypophysectomy and growth hormone treatment on cardiac polysomes and ribonucleic acid. Arch. Biochem. Biophys. 115:445–449.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Peter H. Sugden
    • 1
  1. 1.Department of Cardiac MedicineCardiothoracic InstituteLondonEngland

Personalised recommendations