Na-Ca Exchange in Cardiac Tissues

  • D. Ellis
Part of the Advances in Myocardiology book series (ADMY)

Abstract

Our awareness of the importance of Na-Ca exchange in cardiac muscle has progressed from early observations of Na-Ca antagonism in the activation of contractile force. This was followed by demonstrations of actual NaCa ion countertransport across cell membranes and later functional studies in which manipulation of intracellular and extracellular Na and Ca concentrations has permitted a better characterization of the exchange process and its contribution to contractile force.

The recent development of vesicle preparations from cardiac sarcolemmal membranes has, despite some drawbacks, produced useful information on the electrogenicity of the exchange mechanism and on the relative affinity of the exchange carrier compared to the ATPase-driven Ca pump. These studies confirmed earlier estimates of the approximate exchange ratio of the Na-Ca countertransport system and have demonstrated its large maximum transport rate capabilities.

The application of ion-sensitive microelectrodes in recent years has enabled measurements of the actual ion-activity gradients across the sarcolemmal membrane. These activity gradients together with the membrane potential control the rate and direction of the Na-Ca exchange. Despite the wide range of techniques employed to tackle the problem, the exchange ratio of Na to Ca movement is still in some doubt, with most estimates ranging between 5:2 and 4:1.

Keywords

Cardiac Tissue Purkinje Fiber Coupling Ratio Sheep Heart Mammalian Cardiac Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chapman, R. A. 1979. Excitation—contraction coupling in cardiac muscle. Prog. Biophys. Mol. Biol. 35:1–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Sulakhe, P. V., and St. Louis, P. J. 1980. Passive and active calcium fluxes across plasma membranes. Prog. Biophys. Mol. Biol. 35:135–195.PubMedCrossRefGoogle Scholar
  3. 3.
    Mullins, L. J. 1981. Ion Transport in Heart Raven Press, New York.Google Scholar
  4. 4.
    Reuter, H. 1982. Na—Ca countertransport in cardiac muscle. In: A Martonosi (ed.), Membranes and Transport 1980. Vol. 1, pp. 623–631. Plenum Press, New York.CrossRefGoogle Scholar
  5. 5.
    Langer, G. A. 1982. Sodium—calcium exchange in the heart. Annu. Rev. Physiol. 44:435–449.PubMedCrossRefGoogle Scholar
  6. 6.
    Daly, I. de Burgh, and Clark, A. J. 1921. The action of ions upon the frog’s heart. J. Physiol. 54:367–383.Google Scholar
  7. 7.
    Wilbrandt, W., and Koller, H. 1948. Die Calciumwirkung an Froschherzen als Funktion des Ionengleichgewichts zwischen Zellmembran und Umgebung. Helv. Physiol. Pharmacol. Acta 6:208–221.PubMedGoogle Scholar
  8. 8.
    Lüttgau, H. C., and Niedergerke, R. 1958. The antagonism between Ca and Na ions on the frog’s heart. J. Physiol. 143:486–505.PubMedGoogle Scholar
  9. 9.
    Langer, G. A. 1964. Kinetic studies of calcium distribution in ventricular muscle of the dog. Circ. Res. 15:393–405.PubMedCrossRefGoogle Scholar
  10. 10.
    Repke, K. 1964. Über den biochemischen Wirkungsmodus von Digitalis. Klin. Wochenschr. 42:157–162.PubMedCrossRefGoogle Scholar
  11. 11.
    Reuter, H., and Seitz, N. 1968. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. 195:451–470.PubMedGoogle Scholar
  12. 12.
    Baker, P. F., Blaustein, M. P., Hodgkin, A. L., and Steinhardt, R. A. 1969. The influence of calcium on sodium efflux in squid axons. J. Physiol. 200:431–458.PubMedGoogle Scholar
  13. 13.
    Glitsch, H. G., Reuter, H., and Scholz, H. 1970. The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles. J. Physiol. 209:25–43.PubMedGoogle Scholar
  14. 14.
    Blaustein, M. P., and Hodgkin, A. L. 1969. The effect of cyanide on the efflux of calcium from squid axons. J. Physiol. 200:497–527.PubMedGoogle Scholar
  15. 15.
    Reuter, H. 1970. Calcium transport in cardiac muscle. In: L. Bolis, A. Katchalsky, R. D. Keynes, and W. R. Lowenstein (eds.), Permeability and Function ofBiological Membranes. pp. 342–347. North-Holland, Amsterdam.Google Scholar
  16. 16.
    Blaustein, M. P. 1974. The interrelationship between sodium and calcium fluxes across cell membranes. Rev. Physiol. Biochem. Pharmacol. 70:33–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Mullins, L. J. 1979. The generation of electric currents in cardiac fibres by Na/Ca exchange. Am. J. Physiol. 236: C 103–110.Google Scholar
  18. 18.
    Caroni, P., and Carafoli, E. 1980. An ATP-dependent Ca2 + pumping system in dog heart sarcolemma. Nature (London) 283:765–767.CrossRefGoogle Scholar
  19. 19.
    Caroni, P., Reinlib, L., and Carafoli, E. 1980. Charge movement during the Na +-Ca2 exchange in heart sarcolemmal vesicles. Proc. Natl. Acad. Sci. U.S.A. 77:6354–6358.PubMedCrossRefGoogle Scholar
  20. 20.
    Sommer, J. R., and Johnson, E. A. 1969. Cardiac muscle: A comparative study with special reference to frog and chicken hearts. Z. Zellforsch. 98:437–468.PubMedCrossRefGoogle Scholar
  21. 21.
    Page, S. G., and Niedergerke, R. 1972. Structures of physiological interest in frog heart ventricle. J. Cell Sci. 11:179–203.PubMedGoogle Scholar
  22. 22.
    Chapman, R. A. 1974. A study of the contractures induced in frog atrial trabeculae by a reduction of the bathing sodium concentration. J. Physiol. 237:295–313.PubMedGoogle Scholar
  23. 23.
    Chapman, R. A., and Tunstall, J. 1980. The interaction of sodium and calcium ions at the cell membrane and the control of contractile strength in frog atrial muscle. J. Physiol. 305:109–124.PubMedGoogle Scholar
  24. 24.
    Chapman, R. A., and Ochi, R. 1971. The effects of manganese ions on the contractile responses of isolated frog atrial trabeculae. J. Physiol. 222:56–58P.Google Scholar
  25. 25.
    Chapman, R. A., and Ellis, D. 1977. The effects of manganese ions on the contraction of the frog’s heart. J. Physiol. 272:331–354.PubMedGoogle Scholar
  26. 26.
    Ellis, D. 1977. The effects of external cations and ouabain on the sodium activity in sheep heart Purkinje fibres. J. Physiol. 273:211–240.PubMedGoogle Scholar
  27. 27.
    Ellis, D., and Deitmer, J. W. 1978. The relationship between the intra- and extracellular sodium activity of sheep heart Purkinje fibres during inhibition of the Na-K pump. Pfluegers Arch. 377:209–215.CrossRefGoogle Scholar
  28. 28.
    Horakova, M., and Vassort, G. 1979. Sodium-calcium exchange in regulation of cardiac contractility: Evidence for an electrogenic, voltage-dependent mechanism. J. Gen. Physiol. 73:403–424.CrossRefGoogle Scholar
  29. 29.
    Bers, D. M., and Ellis, D. 1982. Intracellular calcium and sodium activity in sheep heart Purkinje fibres: Effect of changes of external sodium and intracellular pH. Pfluegers Arch. 393:171–178.CrossRefGoogle Scholar
  30. 30.
    Vaughan-Jones, R. D., Lederer, W. J., and Eisner, D. A. 1983. Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. Nature (London) 301:522–524.CrossRefGoogle Scholar
  31. 31.
    Fabiato, A., and Fabiato, F. 1978. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol. 276:233–255.PubMedGoogle Scholar
  32. 32.
    Philipson, K. D., Bers, D. M., Nishimoto, A. Y., and Langer, G. A. 1980. Binding of Ca2 + and Na+ to sarcolemmal membranes: Relation to control of myocardial contractility. Am. J. Physiol. 238:H373–378.PubMedGoogle Scholar
  33. 33.
    Bers, D. M., Philipson, K. D., and Langer, G. A. 1981. Cardiac contractility and sarcolemmal calcium binding in several cardiac muscle preparations. Am. J. Physiol. 240:H576–H583.PubMedGoogle Scholar
  34. 34.
    Tillisch, J. H., Fung, L. K., Horn, P. M., and Langer, G. A. 1979. Transient and steadystate effects of sodium and calcium on myocardial contractile response. J. Mol. Cell. Cardiol. 11:137–148.PubMedCrossRefGoogle Scholar
  35. 35.
    Langer, G. A., Nudd, L. M., and Ricchiuti, N. V. 1976. The effect of sodium deficient perfusion on calcium exchange in cardiac tissue culture. J. Mol. Cell. Cardiol. 8:321–328.PubMedCrossRefGoogle Scholar
  36. 36.
    Wendt, I. R., and Langer, G. A. 1977. The sodium-calcium relationship in mammalian myocardium: Effect of sodium deficient perfusion on calcium fluxes. J. Mol. Cell. Cardiol. 9:551–564.PubMedCrossRefGoogle Scholar
  37. 37.
    Fosset, M. de, Barry, J., Lenoir, M. C., and Lazdunski, M. 1977. Analysis of molecular aspects of Na+ and Ca2+ uptake by embryonic cardiac cells in culture. J. Biol. Chem. 252:6112–6117.PubMedGoogle Scholar
  38. 38.
    Murphy, E., Wheeler, D. M., Anderson, L., Horres, C. R., and Lieberman, M. 1981. Sodium calcium exchange in cultured chick heart cells. J. Gen. Physiol. 78:4a.Google Scholar
  39. 39.
    Mas-Oliva, J., Williams, A. J., and Naylor, W. G. 1980. Two orientations of isolated cardiac sarcolemmal vesicles separated by affinity chromatography. Anal. Biochem. 103:222–226.PubMedCrossRefGoogle Scholar
  40. 40.
    Reinlib, L., Caroni, P., and Carafoli, E. 1981. Studies on heart sarcolemma: Vesicles of opposite orientation and the effect of ATP on the Na +/Ca2 + exchange. FEBS Lett. 126:74–76.PubMedCrossRefGoogle Scholar
  41. 41.
    Reeves, J. P., and Sutko, J. L. 1980. Sodium-calcium exchange affinity generates a current in cardiac membrane vesicles. Science 208:1461–1464.PubMedCrossRefGoogle Scholar
  42. 42.
    Pitts, B. J. R. 1979. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles: Coupling to the sodium pump. J. Biol. Chem. 254:6232–6235.PubMedGoogle Scholar
  43. 43.
    Bers, D. M., Philipson, K. D., and Nishimoto, A. Y. 1980. Sodium calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles. Biochem. Biophys. Acta 601:358–371.PubMedCrossRefGoogle Scholar
  44. 44.
    Philipson, K. D., and Nishimoto, A. Y. 1980. Na +-Ca2 + exchange is affected by membrane potential in cardiac sarcolemmal vesicles. J. Biol. Chem. 255:6880–6882.PubMedGoogle Scholar
  45. 45.
    Caroni, P., Reinlib, L., and Carafoli, E. 1980. Charge movements during the Na+/Ca2+ exchange in heart sarcolemmal vesicles. Proc. Natl. Acad. Sci. U.S.A. 77:6354–6358.PubMedCrossRefGoogle Scholar
  46. 46.
    Brown, A. M. 1979. Evidence for a magnesium- and ATP-dependent calcium extrusion pump in dog erythrocytes. Biochim. Biophys. Acta 554:195–203.PubMedCrossRefGoogle Scholar
  47. 47.
    Parker, J. C. 1979. Active and passive Ca movements in dog red blood cells and resealed ghosts. Am. J. Physiol. 237:C10-C16.PubMedGoogle Scholar
  48. 48.
    Philipson, K. D., Bersohn, M. M., and Nishimoto, A. Y. 1982. Effects of pH on Na+ and Ca2 + exchange in canine cardiac sarcolemmal vesicles. Circ. Res. 50:287–293.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee, C. O., and Fozzard, H. A. 1975. Activities of potass iu m and sodium ions in rabbit heart muscle. J. Gen. Physiol. 65:695–708.PubMedCrossRefGoogle Scholar
  50. 50.
    Deitmer, J. W., and Ellis, D. 1978. Changes in the intracellular sodium activity of sheep heart Purkinje fibres produced by calcium and other divalent cations. J. Physiol. 277:437–453.PubMedGoogle Scholar
  51. 51.
    Coray, A., Fry, C. H., Hess, P., Mc Guigan, J. A. S., and Weingart, R. 1980. Resting calcium in sheep cardiac tissues and in frog skeletal muscle measured with ion-selective microelectrodes. J. Physiol. 305:60–61P.Google Scholar
  52. 52.
    Marban, E., Rink, T. J., Tsien, R. W., and Tsien, R. Y. 1980. Free calcium in heart muscle at rest and during contraction measured with Ca2+-sensitive microelectrodes. Nature (London) 286:845–850.CrossRefGoogle Scholar
  53. 53.
    Sheu, S-S., and Fozzard, H. A. 1982. Transmembrane Na + and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J. Gen. Physiol. 80:325–351.PubMedCrossRefGoogle Scholar
  54. 54.
    Macknight, A. D. C., and Leaf, A. 1977. Regulation of cellular volume. Physiol. Rev. 57:510–573.PubMedGoogle Scholar
  55. 55.
    Chapman, R. A., Coray, A., and Mc Guigan, J. A. S. 1983. Sodium/calcium exchange in mammalian heart: The maintenance of low intracellular calcium concentration. In: A. Drake and M. I. M. Noble (eds.), Cardiac Metabolism. pp. 117–149. John Wiley, New York.Google Scholar
  56. 56.
    Lee, C. O., Uhm, D. Y., and Dresdner, K. 1980. Sodium-calcium exchange in rabbit heart muscle cells: Direct measurement of sarcoplasmic Ca2+ activity. Science 209:699–701.PubMedCrossRefGoogle Scholar
  57. 57.
    Deitmer, J. W., and Ellis, D. 1980. Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres. J. Physiol. 304:471–488.PubMedGoogle Scholar
  58. 58.
    Noble, D. 1980. Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovasc. Res. 14:495–514.PubMedCrossRefGoogle Scholar
  59. 59.
    Ponce-Hornos, J. E., and Langer, G. A. 1980. Sodium-calcium exchange in mammalian myocardium: The effects of lithium. J. Mol. Cell. Cardiol. 12:1367–1382.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee, C. O., and Dagostino, M. 1982. Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine cardiac Purkinje fibres. Biophys. J. 40:185–198.PubMedCrossRefGoogle Scholar
  61. 61.
    Cohen, C. J., Fozzard, H. A., and Sheu, S-S. 1982. Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circ. Res. 50:651–662.PubMedCrossRefGoogle Scholar
  62. 62.
    Lado, M. G., Sheu, S-S., and Fozzard, H. A. 1982. Changes in intracellular Ca2 + activity with stimulation in sheep cardiac Purkinje strands. Am. J. Physiol. 243: H 133–H 137.Google Scholar
  63. 63.
    Glitsch, H. G., Pusch, H., and Vassort, G. 1979. An estimation of the intracellular Na activity in guinea-pig atrial cells. Pfluegers Arch. Suppl. 379:R2.Google Scholar
  64. 64.
    Lee, C. O., Kang, D. H., Sokol, J. H., and Lee, K. S. 1980. Relation between intracellular Na ion activity and tension of sheep cardiac Purkinje fibres exposed to dihydro-ouabain. Biophys. J. 29:315–330.PubMedCrossRefGoogle Scholar
  65. 65.
    Glitsch, H. G., and Pusch, H. 1980. Correlation between changes in membrane potential and intracellular Na activity during K activated response in sheep Purkinje fibres. Pfluegers Arch. 384:189–191.CrossRefGoogle Scholar
  66. 66.
    Sheu, S-S., Korth, M., Lathrop, D. A., and Fozzard, H. A. 1980. Intra- and extracellular K+ and Na + activities and resting membrane potential in sheep cardiac Purkinje strands. Circ. Res. 47:692–700.PubMedCrossRefGoogle Scholar
  67. 67.
    Cohen, C. J., and Fozzard, H. A. 1979. Intracellular K and Na activities in papillary muscle during inotropic interventions. Biophys. J. 25:144.Google Scholar
  68. 68.
    Eisner, D. A., Lederer, W. J., and Vaughan-Jones, R. D. 1981. The dependence of sodium pumping and tension on intracellular sodium activity in voltage-clamped sheep Purkinje fibres. J. Physiol. 317:163–187.PubMedGoogle Scholar
  69. 69.
    Sokol, J. H., Lee, C. O., and Lupo, F. J. 1979. Measurement of the free calcium ion concentration in sheep cardiac Purkinje fibres with neutral carrier Ca + selective microelectrodes. Biophys. J. 25:143 .Google Scholar
  70. 70.
    Dahl, G., and Isenberg, G. 1980. Decoupling of heart muscle cells: Correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure. J. Membr. Biol. 53:63–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • D. Ellis
    • 1
  1. 1.Department of PhysiologyUniversity Medical SchoolEdinburghScotland

Personalised recommendations