Extracellular Structures in Heart Muscle

  • Thomas F. Robinson
  • Leona Cohen-Gould
  • Renee M. Remily
  • Joseph M. Capasso
  • Stephen M. Factor
Part of the Advances in Myocardiology book series (ADMY)


The extracellular matrix of heart muscle contains a considerable variety of structures. We have systematically studied the morphology of these structures using several methods of fixation and microscopy. Endomysial connections between cells are comprised of struts of collagen [1] as well as combinations of elastin fibers, collagen fibers, and microfibrils. The rest of the extracellular matrix is filled with a polyanionic lattice of unit collagen fibrils, microthreads, and granules. In the course of these investigations, we have observed regions of structural continuity across the sarcolemma, from endomysial collagen struts to Z-bands. We have also correlated the mechanical resistance to stretch with orientation of epimysial collagen fibers and sarcomere lengths in living as well as fixed rat papillary muscles. Our observations suggest that the extracellular skeletal framework plays an important role in normal cardiac function.


Collagen Fiber Papillary Muscle Collagen Fibril Heart Muscle Muscle Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caulfield, J. B., and Borg, T. K. 1979. The collagen network of the heart. Lab. Invest. 40:364–372.PubMedGoogle Scholar
  2. 2.
    Bairati, A. 1937. Struttura e proprietà fisiche del sarcolemma della fibra muscolare striata. Z. Zellforsch. 27 :100–124.CrossRefGoogle Scholar
  3. 3.
    Holmgren, E. 1907. Uber die Trophospongien der quergestreiften Muskelfasern, nebst Bemerkungen über den allgemeinen Bau dieser Fasern. Arch. Mikrosk. Anat. 71:165–247.CrossRefGoogle Scholar
  4. 4.
    Nagel, A. 1935. Die mechanischen Eigenschaften von Perimysium internum und Sarkolemm bei der quergestreiften Muskelfaster. Z. Zellforsch. 22:695–706.CrossRefGoogle Scholar
  5. 5.
    Borg, T. K., and Caulfield, J. B. 1979. Collagen in the heart. Texas Rep. Biol. Med. 39:321–333.Google Scholar
  6. 6.
    Borg, T. K., and Caulfield, J. B. 1981. The collagen matrix of the heart. Fed. Proc. Fed. Am. Soc. Exp. Biol. 40:2037–2041.Google Scholar
  7. 7.
    Borg, T. K., Ranson, W. F., Moslehy, F. A., and Caulfield, J. B. 1981. Structural basis of ventricular stiffness. Lab. Invest. 44:49–54.PubMedGoogle Scholar
  8. 8.
    Bahr, G. F., and Jennings, R. B. 1961. Ultrastructure of normal and asphyxic myocardium of the dog. Lab. Invest. 10:548–571.PubMedGoogle Scholar
  9. 9.
    Battig, C. G., and Low, F. N. 1961. The ultrasturcture of human cardiac muscle and its associated tissue space. Am. J. Anat. 108:199–252.CrossRefGoogle Scholar
  10. 10.
    Hanak, H., and Böck, P. 1971. Die Feinstruktur der Muskel-Sehnenverbindung von Skelettund Herzmuskel. J. Ultrastrct. Res. 36:68–85.CrossRefGoogle Scholar
  11. 11.
    Puff, A., and Langer, H. 1965. Das Problem der diastolischen Entfaltung der herzkammer (Eine Untersuchung über das elastische Gewebe im Myocard). Gegen. Morphol. Jahrb. 7:184–212.Google Scholar
  12. 12.
    Renteria, V. G., Ferrans, V. J., and Jones, M. 1976. Striated membranous structures in human hearts. Am. J. Pathol. 85(1):85–98.PubMedGoogle Scholar
  13. 13.
    Robinson, T. F. 1980. Lateral connections between heart muscle cells as revealed by conventional and high voltage transmission electron microscopy. Cell. Tissue Res. 211:353–359.PubMedCrossRefGoogle Scholar
  14. 14.
    Robinson, T. F., Factor, S. M., and Sonnenblick, E. H. 1980. The skeletal framework of the heart: The hierarchical arrangement of inter- and pericellular connections. Circulation 62:111–247.Google Scholar
  15. 15.
    Robinson, T. F., and Winegrad, S. 1981. A variety of intercellular connections in heart muscle. J. Mol. Cell. Cardiol. 13:185–195.PubMedCrossRefGoogle Scholar
  16. 16.
    Winegrad, S., and Robinson, T. F. 1978. Force generation among cells in the relaxing heart. Eur. J. Cardiol. 7(Suppl.):63–70.PubMedGoogle Scholar
  17. 17.
    Capasso, J. M., Remily, R. M., and Sonnenblick, E. H. 1982. Alterations in mechanical properties of rat papillary muscle during maturation. Am. J. Physiol. (Heart Circ. Physiol. 11):242:H359–H364.Google Scholar
  18. 18.
    Saeki, Y., Sagawa, K., and Hiroyuki, S. 1978. Dynamic stiffness of cat heart muscle in Ba2+-induced contracture. Circ. Res. 42:324–333.PubMedCrossRefGoogle Scholar
  19. 19.
    Henderson, A. H., Forman, R., Brutsaert, D. L., and Sonnenblick, E. H. 1971. Tetanic contraction in mammalian cardiac muscle. Cardiovasc. Res. (Suppl.) 1:96–100.CrossRefGoogle Scholar
  20. 20.
    Simeonescu, N., and Simeonescu, M. 1976. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure and evidence for mordanting effect. J. Cell Biol. 70:608–621.CrossRefGoogle Scholar
  21. 21.
    Behnke, O., and Zelander, T. 1970. Preservation of intercellular substances by the cationic dye alcian blue in preparative procedures for electron microscopy. J. Ultrastruct. Res. 31:424–438.PubMedCrossRefGoogle Scholar
  22. 22.
    Luft, J. H. 1971. Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat. Rec. 171:369–416.PubMedCrossRefGoogle Scholar
  23. 23.
    Shepard, N., and Mitchell, N. 1977. The use of ruthenium red and p-phenylenediamine to stain cartilage simultaneously for light and electron microscopy. J. Histochem. Cytochem. 25:1163–1168.PubMedCrossRefGoogle Scholar
  24. 24.
    Brown, L. M., and Hill, L. 1982. Mercuric chloride in alcohol and chloroform used as a rapidly acting fixative for contracting muscle fibres. J. Microsc. 125(3):319–336.PubMedCrossRefGoogle Scholar
  25. 25.
    Hasegawa, T., Ravens, J. R. 1968. A metallic impregnation method for the demonstration of cerebral vascular patterns. Acta Neuropathol. 10:183–188.PubMedCrossRefGoogle Scholar
  26. 26.
    Del Rio Hortega, P. 1943. El metodo del carbonato argentico: Revision general de sus tecnicas y aplicaciones en histologia normal y patoligica. Arch. Histol. Norm. Pathol. (Buenos Aires) 2:231–243.Google Scholar
  27. 27.
    Allen, R. D., Allen, N. S., and Travis, J. L. 1981. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy. Cell Motil. 1:291–302.PubMedCrossRefGoogle Scholar
  28. 28.
    Robinson, T. F., Cohen-Gould, L., and Factor, S. M. 1983. The skeletal framework of mammalian heart muscle: Arrangement of inter- and pericellular connective tissue structures . Lab. Invest. 49:482–498.PubMedGoogle Scholar
  29. 29.
    Ross, R. 1973. The elastic fiber: A review. J. Histochem. Cytochem. 21:199–208.PubMedCrossRefGoogle Scholar
  30. 30.
    Wiegner, A. W., Bing, O. H. L., Borg, R. K., and Caulfield, J. B. 1981. Mechanical and structural correlates of canine pericardium. Circ. Res. 49:807–814.PubMedCrossRefGoogle Scholar
  31. 31.
    Broom, N. D. 1978. Simultaneous morphological and stress-strain studies of the fibrous components in wet heart valve leaflet tissue. Connect. Tiss. Res. 6:37–50.CrossRefGoogle Scholar
  32. 32.
    Robinson, T. F., and Winegrad, S. 1979. The measurement and dynamic implications of thin filament lengths in heart muscle. J. Physiol. 286:607–619.PubMedGoogle Scholar
  33. 33.
    Street, S. F. 1983. Lateral transmission of tension in frog myofibers: A myofibrillar network and transverse cytoskeletal connections are possible transmitters. J. Cell. Physiol. 114:346–364.PubMedCrossRefGoogle Scholar
  34. 34.
    Meyer, F. A., Koblentz, M., and Silberberg, A. 1977. Structural investigation of loose connective tissue by using a series of dextran fractions as non-interacting macro-molecular probes. Biochem. J. 161:285–291.PubMedGoogle Scholar
  35. 35.
    Frank, J. S., Langer, G. A., Nudd, L. M., and Saraydarian, C. 1977. The myocardial cell surface, its histochemistry, and the effect of sialic acid and calcium removal on its structure and cellular ionic exchange. Circ. Res. 41:702–714.PubMedCrossRefGoogle Scholar
  36. 36.
    Myers, D. B., Highton, T. C., and Rayns, D. G. 1973. Ruthenium red-positive filaments interconnecting collagen fibrils. J. Ultrastruct. Res. 42:87–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Rosenberg, L., Hellman, W., and Kleinschmidt, A. K. 1970. Macromolecular models of protein polysaccharide from bovine nasal cartilage based on electron microscopic studies. J. Biol. Chem. 245:4123–4130.PubMedGoogle Scholar
  38. 38.
    Wight, T. N., and Hascall, V. C. 1983. Proteoglycans in primate arteries. III. Characterization of the proteoglycans synthesized by arterial smooth muscle cells in culture. J. Cell Biol. 96:167–176.PubMedCrossRefGoogle Scholar
  39. 39.
    Jones, R. M. 1975. Mechanics of Composite Materials. Scripta, Washington, D.C.Google Scholar
  40. 40.
    Wittenberg, B. A., and Robinson, T. F. 1981. Oxygen requirements, morphology, cell coat and membrane permeability of calcium-tolerant myocytes from hearts of adult rats. Cell Tissue Res. 216:231–251.PubMedCrossRefGoogle Scholar
  41. 41.
    Puchtler, H., and Meloan, S. N. 1979. Orcein, collastin and pseudoelastica: A reinvestigation of Unna’s concepts. Histochemistry 64:119–130.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Thomas F. Robinson
    • 1
  • Leona Cohen-Gould
    • 2
  • Renee M. Remily
    • 2
  • Joseph M. Capasso
    • 2
  • Stephen M. Factor
    • 3
  1. 1.Cardiovascular Center, Department of Medicine and Department of Physiology and BiophysicsAlbert Einstein College of MedicineBronxUSA
  2. 2.Cardiovascular Center, Department of MedicineAlbert Einstein College of MedicineBronxUSA
  3. 3.Department of PathologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations