Intercellular Junctions and the Cardiac Intercalated Disk

  • N. J. Severs
Part of the Advances in Myocardiology book series (ADMY)


Cardiac muscle cells are equipped with three distinct types of intercellular junction—gap junctions, “spot” desmosomes, and “sheet” desmosomes (or fasciae adherentes)—located in a specialized portion of the plasma membrane, the intercalated disk. Gap junctions are responsible for electrical coupling and the transfer of small molecules between cells, whereas the desmosomelike junctions (also known as adherens junctions) provide strong intercellular adhesion. The adhesion sites formed by the “spot” desmosome anchor the intermediate-filament cytoskeleton of the cell; those formed by the fascia adherens anchor the contractile apparatus. An understanding of the ultrastructure of these junctions helps explain how they carry out their functions, and new observations in this field have been made through the application of ultrarapid freezing techniques in conjunction with freeze-fracture electron microscopy. With recent findings from biochemical and immunocytochemical studies, this understanding is now being extended to the molecular level.


Intercellular Junction Cardiac Muscle Cell Intercalate Disk Serial Thin Section Zonula Adherens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McNutt, N. S., and Weinstein, R. S. 1973. Membrane structure at mammalian intercellular junctions. Prog. Biophys. Mol. Biol. 26:45–101.PubMedCrossRefGoogle Scholar
  2. 2.
    Staehelin, L. A. 1974. Structure and function of intercellular junctions. Int. Rev. Cytol. 39:191–283.PubMedCrossRefGoogle Scholar
  3. 3.
    Page, E., and Shibata, Y. 1981. Permeable junctions between cardiac cells. Annu. Rev. Physiol. 43:431–441.PubMedCrossRefGoogle Scholar
  4. 4.
    De Mello, W. C. 1982. Intercellular communication in cardiac muscle. Circ. Res. 51:1–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Turin, L., and Warner, A. 1977. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature (London) 270:56–57.CrossRefGoogle Scholar
  6. 6.
    Dahl, G., and Isenberg, G. 1980. Decoupling of heart muscle cells: Correlation with increased cytoplasmic calcium activity and with changes in nexus ultrastructure. J. Membr. Biol. 53:63–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Peracchia, C., and Peracchia, L. 1980. Gap junction dynamics: Reversible effects of divalent cations. J. Cell Biol. 87:708–718.PubMedCrossRefGoogle Scholar
  8. 8.
    Peracchia, C., and Peracchia, L. 1980. Gap junction dynamics: Reversible effects of hydrogen ions. J. Cell Biol. 87:719–727.PubMedCrossRefGoogle Scholar
  9. 9.
    Burt, J. M., Frank, J. S., and Berns, M. W. 1982. Permeability and structural studies of heart cell gap junctions under normal and altered ionic conditions. J. Membr. Biol. 68:227–238.PubMedCrossRefGoogle Scholar
  10. 10.
    Welsh, M. J., Aster, J. C., Ireland, M., Alcala, J., and Maisel, H. 1982. Calmodulin binds to chick lens gap junction protein in a calcium-independent manner. Science 216:642–644.PubMedCrossRefGoogle Scholar
  11. 11.
    Unwin, P. N. T., and Zampighi, G. 1980. Structure of the junction between communicating cells. Nature (London) 283:545–549.CrossRefGoogle Scholar
  12. 12.
    Kensler, R. W., and Goodenough, D. A. 1980. Isolation of mouse myocardial gap junctions. J. Cell Biol. 86:755–764.PubMedCrossRefGoogle Scholar
  13. 13.
    Manjunath, C. K., Goings, G. E., and Page, E. 1982. Isolation and protein composition of gap junctions from rabbit hearts. Biochem. J. 205:189–194.PubMedGoogle Scholar
  14. 14.
    Manjunath, C. K., Goings, G. E., and Page, E. 1982. Protein composition of cardiac gap junctions: Comparison between mammalian species and between junctions from rat heart and liver. J. Cell Biol. 95:88a.Google Scholar
  15. 15.
    Nicholson, B. J., Gros, D., and Revel, J.-P. 1982. Tissue specificity in the gap junctional protein. J. Cell Biol. 95:104a.Google Scholar
  16. 16.
    Peracchia, C. 1977. Gap junctions: Structural changes after uncoupling procedures. J. Cell Biol. 72:628–641.PubMedCrossRefGoogle Scholar
  17. 17.
    Peracchia, C. 1980. Structural correlates of gap junction permeation. Int. Rev. Cytol. 66:81–146.PubMedCrossRefGoogle Scholar
  18. 18.
    Baldwin, K. 1979. Cardiac gap junction configuration after an uncoupling treatment as a function of time. J. Cell Biol. 82:66–75.PubMedCrossRefGoogle Scholar
  19. 19.
    Green, C. R., and Severs, N. J. 1983. Structural alterations in cardiac gap junctions captured by ultrarapid freezing. J. Mol. Cell. Cardiol. 15(Suppl 3):172.Google Scholar
  20. 20.
    Severs, N. J., and Green, C. R. 1983. Rapid freezing of unpretreated tissues for freeze-fracture electron microscopy. Biol. Cell 47:193–204.Google Scholar
  21. 21.
    Severs, N. J., and Green, C. R. 1983. Ultrarapid freezing techniques and connexon arrangement in cardiac gap junctions. Beitr. Elektronenmikrosc. Directabb. Oberfl. 16:5 71–578.Google Scholar
  22. 22.
    Wood, R. L., and Hageman, G. S. 1982. The fine structure of cellular junctions in a marine Bryozoan: Gap junctions. J. Ultrastruct. Res. 79:174–188.PubMedCrossRefGoogle Scholar
  23. 23.
    Severs, N. J., Slade, A. M., Powell, T., Twist, V. W., and Warren, R. L. 1982. Correlation of ultrastructure and function in calcium-tolerant myocytes isolated from the adult rat heart. J. Ultrastruct. Res. 81:222–239.PubMedCrossRefGoogle Scholar
  24. 24.
    Powell, T., Terrar, D. A., and Twist, V. W. 1980. Electrical properties of individual cells isolated from adult rat ventricular myocardium. J. Physiol. 302:131–153.PubMedGoogle Scholar
  25. 25.
    Mueller, H., and Franke, W. W. 1983. Biochemical and immunological characterization of desmoplakins I and II, the major polypeptides of the desmosomal plaque. J. Mol. Biol. 163:647–671.PubMedCrossRefGoogle Scholar
  26. 26.
    Franke, W. W., Moll, R. Schiller, D. L., Schmid, E., Kartenbeck, J., and Mueller, H. 1982. Desmoplakins of epithelial and myocardial desmosomes are immunologically and biochemically related. Differentiation 23:115–127.PubMedCrossRefGoogle Scholar
  27. 27.
    Cowin, P., and Garrod, D. R. 1983. Antibodies to epithelial desmosomes show wide tissue and species cross-reactivity. Nature (London) 302:148–150.CrossRefGoogle Scholar
  28. 28.
    Lazarides, E. 1980. Intermediate filaments as mechanical integrators of cellular space. Nature (London) 283:249–256.CrossRefGoogle Scholar
  29. 29.
    Rayns, D. G., Simpson, F. O., and Ledingham, J. M. 1969. Ultrastructure of desmosomes in mammalian intercalated disc: Appearances after lanthanum treatment. J. Cell Biol. 42:322–326.PubMedCrossRefGoogle Scholar
  30. 30.
    Kelly, D. E., and Sheinvold, F. L. 1976. The desmosome: Fine structural studies with freeze-fracture replication and tannic acid staining of sectioned epidermis. Cell Tissue Res. 172:309–323.PubMedCrossRefGoogle Scholar
  31. 31.
    Gorbsky, G., and Steinberg, M. S. 1981. Isolation of the intercellular glycoproteins of desmosomes. J. Cell Biol. 90:243–248.PubMedCrossRefGoogle Scholar
  32. 32.
    McNutt, N. S. 1970. Ultrastructure of intercellular junctions in adult and developing cardiac muscle. Am. J.Cardiol. 25:169–183.PubMedCrossRefGoogle Scholar
  33. 33.
    Sommer, J. R., and Johnson, E. A. 1979. Ultrastructure of cardiac muscle. In: R. M. Berne, N. Sperelakis, and S. R. Geiger (eds), Handbook of Physiology, Section 2: The Cardiovascular System. Vol. 1, pp. 113–186. American Physiology Society, Bethesda, Maryland.Google Scholar
  34. 34.
    Shimono, M., and Clementi, F. 1976. Intercellular junctions of oral epithelium. I. Studies with freeze-fracture and tracing methods of normal rat keratinized oral epithelium. J. Ultrastruct. Res. 56:121–136.PubMedCrossRefGoogle Scholar
  35. 35.
    Yamaguchi, M., Robson, R. M., and Stromer, M. H. 1983. Evidence for actin involvement in cardiac Z-lines and Z-line analogues. J. Cell Biol. 96:435–442.PubMedCrossRefGoogle Scholar
  36. 36.
    Koteliansky, V. E., Glukhova, M. A., Shirinsky, V. P. Babaev, V. R., Kandalenko, V. F., Rukosuev, V. S., and Smirnov, V. N. 1981. Identification of a filamin-like protein in chicken heart muscle. FEBS Lett. 125:44–48.PubMedCrossRefGoogle Scholar
  37. 37.
    Chowrashi, P. K., and Pepe, F. A. 1982. The Z-band: 85,000-Dalton amorphin and alphaactinin and their relation to structure. J. Cell Biol. 94:565–573.PubMedCrossRefGoogle Scholar
  38. 38.
    Ohashi, K., and Maruyama, K. 1979. A new structural protein located in the Z-lines of chicken skeletal muscle. J. Biochem. 85:1103–1105.Google Scholar
  39. 39.
    Colaco, C. A. L. S., and Evans, W. H. 1981. A biochemical dissection of the cardiac intercalated disk: Isolation of subcellular fractions containing fasciae adherentes and gap junctions. J. Cell Sci. 52:313–325.PubMedGoogle Scholar
  40. 40.
    Granger, B. L., and Lazarides, E. 1979. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell 18:1053–1063.PubMedCrossRefGoogle Scholar
  41. 41.
    Koteliansky, V. E., Gneushev, G. N., Shartava, A. S., Shirinsky, V. P., Glukhova, M. A., and Goodman, S. R. 1983. The regulation by vinculin of filamin, α-actinin and spectrin tetramer-induced actin sol—gel transformation. FEBS Lett. 151:206–210.Google Scholar
  42. 42.
    Geiger, B., Tokuyasu, K. T., Dutton, A. H., and Singer, S. J. 1980. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc. Natl. Acad. Sci. U.S.A. 77:4127–4131.PubMedCrossRefGoogle Scholar
  43. 43.
    Tokuyasu, K. T. 1983. Present state of immunocryoultramicrotomy. J. Histochem. Cytochem. 31:164–167.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • N. J. Severs
    • 1
  1. 1.Department of Cardiac MedicineCardiothoracic Institute (University of London)LondonEngland

Personalised recommendations