Skip to main content

Intercellular Junctions and the Cardiac Intercalated Disk

  • Chapter
Advances in Myocardiology

Part of the book series: Advances in Myocardiology ((ADMY))

Abstract

Cardiac muscle cells are equipped with three distinct types of intercellular junction—gap junctions, “spot” desmosomes, and “sheet” desmosomes (or fasciae adherentes)—located in a specialized portion of the plasma membrane, the intercalated disk. Gap junctions are responsible for electrical coupling and the transfer of small molecules between cells, whereas the desmosomelike junctions (also known as adherens junctions) provide strong intercellular adhesion. The adhesion sites formed by the “spot” desmosome anchor the intermediate-filament cytoskeleton of the cell; those formed by the fascia adherens anchor the contractile apparatus. An understanding of the ultrastructure of these junctions helps explain how they carry out their functions, and new observations in this field have been made through the application of ultrarapid freezing techniques in conjunction with freeze-fracture electron microscopy. With recent findings from biochemical and immunocytochemical studies, this understanding is now being extended to the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McNutt, N. S., and Weinstein, R. S. 1973. Membrane structure at mammalian intercellular junctions. Prog. Biophys. Mol. Biol. 26:45–101.

    Article  PubMed  CAS  Google Scholar 

  2. Staehelin, L. A. 1974. Structure and function of intercellular junctions. Int. Rev. Cytol. 39:191–283.

    Article  PubMed  CAS  Google Scholar 

  3. Page, E., and Shibata, Y. 1981. Permeable junctions between cardiac cells. Annu. Rev. Physiol. 43:431–441.

    Article  PubMed  CAS  Google Scholar 

  4. De Mello, W. C. 1982. Intercellular communication in cardiac muscle. Circ. Res. 51:1–9.

    Article  PubMed  Google Scholar 

  5. Turin, L., and Warner, A. 1977. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature (London) 270:56–57.

    Article  CAS  Google Scholar 

  6. Dahl, G., and Isenberg, G. 1980. Decoupling of heart muscle cells: Correlation with increased cytoplasmic calcium activity and with changes in nexus ultrastructure. J. Membr. Biol. 53:63–75.

    Article  PubMed  CAS  Google Scholar 

  7. Peracchia, C., and Peracchia, L. 1980. Gap junction dynamics: Reversible effects of divalent cations. J. Cell Biol. 87:708–718.

    Article  PubMed  CAS  Google Scholar 

  8. Peracchia, C., and Peracchia, L. 1980. Gap junction dynamics: Reversible effects of hydrogen ions. J. Cell Biol. 87:719–727.

    Article  PubMed  CAS  Google Scholar 

  9. Burt, J. M., Frank, J. S., and Berns, M. W. 1982. Permeability and structural studies of heart cell gap junctions under normal and altered ionic conditions. J. Membr. Biol. 68:227–238.

    Article  PubMed  CAS  Google Scholar 

  10. Welsh, M. J., Aster, J. C., Ireland, M., Alcala, J., and Maisel, H. 1982. Calmodulin binds to chick lens gap junction protein in a calcium-independent manner. Science 216:642–644.

    Article  PubMed  CAS  Google Scholar 

  11. Unwin, P. N. T., and Zampighi, G. 1980. Structure of the junction between communicating cells. Nature (London) 283:545–549.

    Article  CAS  Google Scholar 

  12. Kensler, R. W., and Goodenough, D. A. 1980. Isolation of mouse myocardial gap junctions. J. Cell Biol. 86:755–764.

    Article  PubMed  CAS  Google Scholar 

  13. Manjunath, C. K., Goings, G. E., and Page, E. 1982. Isolation and protein composition of gap junctions from rabbit hearts. Biochem. J. 205:189–194.

    PubMed  CAS  Google Scholar 

  14. Manjunath, C. K., Goings, G. E., and Page, E. 1982. Protein composition of cardiac gap junctions: Comparison between mammalian species and between junctions from rat heart and liver. J. Cell Biol. 95:88a.

    Google Scholar 

  15. Nicholson, B. J., Gros, D., and Revel, J.-P. 1982. Tissue specificity in the gap junctional protein. J. Cell Biol. 95:104a.

    Google Scholar 

  16. Peracchia, C. 1977. Gap junctions: Structural changes after uncoupling procedures. J. Cell Biol. 72:628–641.

    Article  PubMed  CAS  Google Scholar 

  17. Peracchia, C. 1980. Structural correlates of gap junction permeation. Int. Rev. Cytol. 66:81–146.

    Article  PubMed  CAS  Google Scholar 

  18. Baldwin, K. 1979. Cardiac gap junction configuration after an uncoupling treatment as a function of time. J. Cell Biol. 82:66–75.

    Article  PubMed  CAS  Google Scholar 

  19. Green, C. R., and Severs, N. J. 1983. Structural alterations in cardiac gap junctions captured by ultrarapid freezing. J. Mol. Cell. Cardiol. 15(Suppl 3):172.

    Google Scholar 

  20. Severs, N. J., and Green, C. R. 1983. Rapid freezing of unpretreated tissues for freeze-fracture electron microscopy. Biol. Cell 47:193–204.

    Google Scholar 

  21. Severs, N. J., and Green, C. R. 1983. Ultrarapid freezing techniques and connexon arrangement in cardiac gap junctions. Beitr. Elektronenmikrosc. Directabb. Oberfl. 16:5 71–578.

    Google Scholar 

  22. Wood, R. L., and Hageman, G. S. 1982. The fine structure of cellular junctions in a marine Bryozoan: Gap junctions. J. Ultrastruct. Res. 79:174–188.

    Article  PubMed  CAS  Google Scholar 

  23. Severs, N. J., Slade, A. M., Powell, T., Twist, V. W., and Warren, R. L. 1982. Correlation of ultrastructure and function in calcium-tolerant myocytes isolated from the adult rat heart. J. Ultrastruct. Res. 81:222–239.

    Article  PubMed  CAS  Google Scholar 

  24. Powell, T., Terrar, D. A., and Twist, V. W. 1980. Electrical properties of individual cells isolated from adult rat ventricular myocardium. J. Physiol. 302:131–153.

    PubMed  CAS  Google Scholar 

  25. Mueller, H., and Franke, W. W. 1983. Biochemical and immunological characterization of desmoplakins I and II, the major polypeptides of the desmosomal plaque. J. Mol. Biol. 163:647–671.

    Article  PubMed  CAS  Google Scholar 

  26. Franke, W. W., Moll, R. Schiller, D. L., Schmid, E., Kartenbeck, J., and Mueller, H. 1982. Desmoplakins of epithelial and myocardial desmosomes are immunologically and biochemically related. Differentiation 23:115–127.

    Article  PubMed  CAS  Google Scholar 

  27. Cowin, P., and Garrod, D. R. 1983. Antibodies to epithelial desmosomes show wide tissue and species cross-reactivity. Nature (London) 302:148–150.

    Article  CAS  Google Scholar 

  28. Lazarides, E. 1980. Intermediate filaments as mechanical integrators of cellular space. Nature (London) 283:249–256.

    Article  CAS  Google Scholar 

  29. Rayns, D. G., Simpson, F. O., and Ledingham, J. M. 1969. Ultrastructure of desmosomes in mammalian intercalated disc: Appearances after lanthanum treatment. J. Cell Biol. 42:322–326.

    Article  PubMed  CAS  Google Scholar 

  30. Kelly, D. E., and Sheinvold, F. L. 1976. The desmosome: Fine structural studies with freeze-fracture replication and tannic acid staining of sectioned epidermis. Cell Tissue Res. 172:309–323.

    Article  PubMed  CAS  Google Scholar 

  31. Gorbsky, G., and Steinberg, M. S. 1981. Isolation of the intercellular glycoproteins of desmosomes. J. Cell Biol. 90:243–248.

    Article  PubMed  CAS  Google Scholar 

  32. McNutt, N. S. 1970. Ultrastructure of intercellular junctions in adult and developing cardiac muscle. Am. J.Cardiol. 25:169–183.

    Article  PubMed  CAS  Google Scholar 

  33. Sommer, J. R., and Johnson, E. A. 1979. Ultrastructure of cardiac muscle. In: R. M. Berne, N. Sperelakis, and S. R. Geiger (eds), Handbook of Physiology, Section 2: The Cardiovascular System. Vol. 1, pp. 113–186. American Physiology Society, Bethesda, Maryland.

    Google Scholar 

  34. Shimono, M., and Clementi, F. 1976. Intercellular junctions of oral epithelium. I. Studies with freeze-fracture and tracing methods of normal rat keratinized oral epithelium. J. Ultrastruct. Res. 56:121–136.

    Article  PubMed  CAS  Google Scholar 

  35. Yamaguchi, M., Robson, R. M., and Stromer, M. H. 1983. Evidence for actin involvement in cardiac Z-lines and Z-line analogues. J. Cell Biol. 96:435–442.

    Article  PubMed  CAS  Google Scholar 

  36. Koteliansky, V. E., Glukhova, M. A., Shirinsky, V. P. Babaev, V. R., Kandalenko, V. F., Rukosuev, V. S., and Smirnov, V. N. 1981. Identification of a filamin-like protein in chicken heart muscle. FEBS Lett. 125:44–48.

    Article  PubMed  CAS  Google Scholar 

  37. Chowrashi, P. K., and Pepe, F. A. 1982. The Z-band: 85,000-Dalton amorphin and alphaactinin and their relation to structure. J. Cell Biol. 94:565–573.

    Article  PubMed  CAS  Google Scholar 

  38. Ohashi, K., and Maruyama, K. 1979. A new structural protein located in the Z-lines of chicken skeletal muscle. J. Biochem. 85:1103–1105.

    CAS  Google Scholar 

  39. Colaco, C. A. L. S., and Evans, W. H. 1981. A biochemical dissection of the cardiac intercalated disk: Isolation of subcellular fractions containing fasciae adherentes and gap junctions. J. Cell Sci. 52:313–325.

    PubMed  CAS  Google Scholar 

  40. Granger, B. L., and Lazarides, E. 1979. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell 18:1053–1063.

    Article  PubMed  CAS  Google Scholar 

  41. Koteliansky, V. E., Gneushev, G. N., Shartava, A. S., Shirinsky, V. P., Glukhova, M. A., and Goodman, S. R. 1983. The regulation by vinculin of filamin, α-actinin and spectrin tetramer-induced actin sol—gel transformation. FEBS Lett. 151:206–210.

    Google Scholar 

  42. Geiger, B., Tokuyasu, K. T., Dutton, A. H., and Singer, S. J. 1980. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc. Natl. Acad. Sci. U.S.A. 77:4127–4131.

    Article  PubMed  CAS  Google Scholar 

  43. Tokuyasu, K. T. 1983. Present state of immunocryoultramicrotomy. J. Histochem. Cytochem. 31:164–167.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Severs, N.J. (1985). Intercellular Junctions and the Cardiac Intercalated Disk. In: Harris, P., Poole-Wilson, P.A. (eds) Advances in Myocardiology. Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1287-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1287-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1289-6

  • Online ISBN: 978-1-4757-1287-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics