Oxygen Radicals and Tissue Damage in Heart Hypertrophy

  • Carlo Guarnieri
  • Claudio Muscari
  • Claudio M. Caldarera
Part of the Advances in Myocardiology book series (ADMY)


Cyanide-resistant respiration in heart homogenates supplemented with 1 mM NADH was greater in hypertrophied homogenates (60 days banding) with respect to control homogenates, particularly when the homogenates were incubated in 100% oxygen. The intermyofibrillar mitochondria from hypertrophied hearts produced more superoxide radicals than subsarcolemmal mitochondria, and both values were greater than in the unbanded group. H202 formation was more evident in the intact mitochondria prepared from hypertrophied hearts than in those of the control hearts. Moreover, the perfusion of isolated hearts in anoxic and reox-ygenated conditions caused a greater lipoperoxidative and functional damage at the mitochondrial level in hypertrophied hearts than in the control hearts. These results, correlated with the reduction in mitochondrial function found in the overloaded hearts, suggest an involvement of the reactive species of oxygen in the formation of cardiac damage induced by prolonged aortic banding.


Aortic Stenosis Rabbit Heart Control Heart Hypertrophied Heart Cardiac Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halliwell, B. 1978. Biochemical mechanism accounting for the toxic action of oxygen on living organisms: The key role of superoxide dismutase. Cell Biol. Int. Rev. 2:113–128.CrossRefGoogle Scholar
  2. 2.
    Freeman, B. A., and Crapo, J. D. 1982. Biology of disease-free radicals and tissue injury. Lab. Invest. 47:412–426.PubMedGoogle Scholar
  3. 3.
    Fridovich, I. 1975. Superoxide dismutase. Annu. Rev. Biochem. 44:147–159.PubMedCrossRefGoogle Scholar
  4. 4.
    Forman, H. J., and Fisher, A. B. 1982. Antioxidant defenses. In: D. L. Gilbert (ed.), Oxygen and Living Processes: An Interdisciplinary Approach. pp. 235–248. Springer-Verlag, New York.Google Scholar
  5. 5.
    Hughson, M., Balentine, J. D., and Daniell, H. B. 1977. The ultrastructural pathology of hyperbaric oxygen exposure: Observations on the heart. Lab. Invest. 37:516–525.PubMedGoogle Scholar
  6. 6.
    Nohl, H., Hegner, D., and Summer, K. H. 1981. The mechanism of toxic action of hyperbaric oxygenation on the mitochondria of rat heart cells. Biochem. Pharmacol. 30:1753–1757.PubMedCrossRefGoogle Scholar
  7. 7.
    Guarnieri, C., Ferrari, R., Visioli, O., Caldarera, C. M., and Nayler, W. G. 1978. Effect of α-tocopherol on hypoxic perfused and reoxygenated rabbit heart muscle. J. Mol. Cell. Cardiol. 10:893–906.PubMedCrossRefGoogle Scholar
  8. 8.
    Guarnieri, C., Flamigni, F., Ventura C., and Rossoni Caldarera, C. 1981. Inhibition of rat heart superoxide dismutase activity by diethyldithiocarbamate and its effect on mitochondrial function. Biochem. Pharmacol. 30:2174–2176.PubMedCrossRefGoogle Scholar
  9. 9.
    Doroshow, J. H. 1983. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Canc. Res. 43:460–472.Google Scholar
  10. 10.
    Guarnieri, C., Flamigni, F., and Caldarera, C. M. 1980. Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart. J. Mol. Cell. Cardiol. 12:797–808.PubMedCrossRefGoogle Scholar
  11. 11.
    Shattock, M. J., Manning, A. S., and Hearse, D. J. 1982. Effects of hydrogen peroxide on cardiac function and post-ischaemic functional recovery in the isolated working rat heart. Pharmacology 24:118–122.PubMedCrossRefGoogle Scholar
  12. 12.
    Williams, A. J., and Barrie, S. E. 1978. Temperature effects on the kinetics of calcium transport by cardiac mitochondria. Biochem. Biophys. Res. Commun. 84:89–93.PubMedCrossRefGoogle Scholar
  13. 13.
    McMillin-Wood, J., Wolkowiez, P. E., Chu, A., Tate, C. A., Goldstein, M. A., and Entman, M. L. 1980. Calcium uptake by two preparations of mitochondria from heart. Biochim. Biophys. Acta 591:251–265.PubMedCrossRefGoogle Scholar
  14. 14.
    Kuthan, H., Ullrich, V., and Estabrook, R. W. 1982. A quantitative test for superoxide radicals produced in biological systems. Biochem. J. 203:551–558.PubMedGoogle Scholar
  15. 15.
    Loschen, G., Flohé, L., and Chance, B. 1971. Respiratory chain linked H>20>2 production in pigeon heart mitochondrial. FEBS Lett. 18:261–264.PubMedCrossRefGoogle Scholar
  16. 16.
    Ohkawa, H., Ohishi, N., and Yagi, K. 1979. Assay for lipid peroxides in animal tissues by the thiobarbituric acid reaction. Anal. Biochem. 95:351–358.PubMedCrossRefGoogle Scholar
  17. 17.
    Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:246–254.CrossRefGoogle Scholar
  18. 18.
    Hassan, H. M., and Fridovich, I. 1979. Regulation of the synthesis of superoxide dismutase in Escherichia coli. J. Biol. Chem. 252:7667–7672.Google Scholar
  19. 19.
    Palmer, J. W., Tandler, B., and Hoppel, C. L. 1977. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J. Biol. Chem. 252:8731–8739.PubMedGoogle Scholar
  20. 20.
    Wolkowiez, P. E., and McMillin-Wood, I. 1980. Respiration dependent calcium ion uptake by two preparations of cardiac mitochondria. Biochem. J. 186:257–266.Google Scholar
  21. 21.
    Hoppel, C. L., Tandler, B., Parland, W., Turkaly, J. S., and Albers, L. D. 1982. Hamster cardiomyopathy: A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria. J. Biol. Chem. 257:1540–1548.PubMedGoogle Scholar
  22. 22.
    Turrens, J. F., Freeman, B. A., Levitt, J. C., and Crapo, J. D. 1982. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217:401–410.PubMedCrossRefGoogle Scholar
  23. 23.
    Loschen, G., Azzi, A., and Flohé, L. 1973. Mitochondrial H>20>2 formation: Relationship with energy conservation. FEBS Lett. 33:84–88.PubMedCrossRefGoogle Scholar
  24. 24.
    Freeman, B. A., and Crapo, J. D. 1981. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256:10, 986–10, 992.Google Scholar
  25. 25.
    Nohl, H., and Hegner, D. 1978. Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82:563–567.PubMedCrossRefGoogle Scholar
  26. 26.
    Rabinowitz, M., and Zack, R. 1975. Mitochondria and cardiac hypertrophy. Circ. Res. 36:367–376.PubMedCrossRefGoogle Scholar
  27. 27.
    Wikman-Coffelt, J., Parmley, W. W., and Mason, D. T. 1979. The cardiac hypertrophy process. Circ. Res. 45:697–707.PubMedCrossRefGoogle Scholar
  28. 28.
    Moravec, J., Renault, G., and Hatt, P. Y. 1978. Alterations of mitochondrial function as detected in left ventricular myocardium of rats with acute aortic constriction. Basic Res. Cardiol. 73:535–550.PubMedCrossRefGoogle Scholar
  29. 29.
    Nohl, H., Jordan, W., and Hegner, D. 1982. Mitochondrial formation of OH• radicals by an ubisemiquinone-dependent reaction: An alternative pathway to the iron-catalysed Haber—Weiss cycle. Hoppe-Seyler’s Z. Physiol. Chem. 363:599–607.PubMedCrossRefGoogle Scholar
  30. 30.
    Paglia, D. E., and Valentine, W. N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70:158–169.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Carlo Guarnieri
    • 1
  • Claudio Muscari
    • 1
  • Claudio M. Caldarera
    • 1
  1. 1.Istituto di Chimica Biologica, Centro Studi e Ricerche del Metabolismo del MiocardioUniversità di BolognaBolognaItaly

Personalised recommendations