Skip to main content

The Role of Lysosomes and Microtubules in Cardiac Protein Degradation

  • Chapter
Book cover Advances in Myocardiology

Part of the book series: Advances in Myocardiology ((ADMY))

Abstract

The mechanisms and regulatory factors involved in cardiac proteolysis are incom- pletely understo0d. Agents that interfere with lysosomal function (e.g., chloroquine, leupeptin, methyladenine) cause a 25–30% reduction in the overall rate of protein degradation. In the same hearts, however, the rate of myosin breakdown remains unchanged. Disaggregation of microtubules with colchicine is accompanied by a 15% reduction in the rate of degradation of total protein and of myosin. In the same hearts, the degradation of “organellar” protein, including mitochondrial cytochromes, is reduced by over 30%. Thus, it appears that the degradation of different classes of cardiac proteins may be accomplished and regulated by different processes. Lysosomes are important in overall proteolysis, but appear not to be involved in the regulation of myosin breakdown. Microtubules are also involved in the proteolytic process, and appear to be especially important for the breakdown of proteins from mitochondria and perhaps other organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amenta, J. S., Sargus, M. J., and Baccino, F. M. 1977. Effect of microtubular or translational inhibitors on general cell protein degradation. Biochem. J. 168:223–227.

    PubMed  CAS  Google Scholar 

  2. Ballard, F. J. 1977. Intracellular protein degradation. In: P. N. Campbell and W. N. Aldridge (eds.), Essays in Biochemistry. Vol. 13. pp. 1–37. Academic Press, New York.

    Google Scholar 

  3. Barrett, A. J. 1980. The many forms and functions of cellular proteinases. Fed. Proc. Fed. Am. Soc. Exp. Biol. 39:9–14.

    CAS  Google Scholar 

  4. Crie, J. S., Ord, J. M., Wakeland, J. R., and Wildenthal, K. 1983. Inhibition of cardiac proteolysis by colchicine. Biochem. J. 210:63–71.

    PubMed  CAS  Google Scholar 

  5. Dean, R. T. 1980. Regulation and mechanisms of degradation of endogenous proteins by mammalian cells: General considerations. In: K. Wildenthal (ed.), Degradative Processes in Heart and Skeletal Muscle. pp. 3–30. North-Holland, Amsterdam.

    Google Scholar 

  6. Grinde, B., and Seglen, P. O. 1981. Role of microtubuli in the lysosomal degradation of endogenous and exogenous protein in isolated rat hepatocytes. Hoppe-Seyler’s Z. Physiol. Chem. 362:549–556.

    Article  PubMed  CAS  Google Scholar 

  7. Hoh, J. F. Y., McGrath, P. A., and Hale, P. T. 1978. Electrophoretic analysis of multiple forms of rat cardiac myosin: Effects of hypophysectomy and thyroxine replacement. J. Mol. Cell. Cardiol. 10:1053–1076.

    Article  PubMed  CAS  Google Scholar 

  8. Kolset, S. O., Tolleshaug, H. and Berg, T. 1979. The effects of colchicine and cytochalasin B on uptake and degradation of asialo-glycoproteins in isolated rat hepatocytes. Exp. Cell Res. 122:159–167.

    Article  PubMed  CAS  Google Scholar 

  9. Libby, P., Ingwall, J. S., and Goldberg, A. L. 1979. Reduction of protein degradation and atrophy in cultured fetal mouse hearts by leupentin. Am. J. Physiol. 237:F35-F39.

    Google Scholar 

  10. Ord, J. M., Wakeland, J. R., Crie, J. S., and Wildenthal, K. 1983. Mechanisms of degradation of myofibrillar and nonmyofibrillar protein in heart. In: E. Chazov, V. Saks, and G. Rona (eds.), Advances in Myocardiology. Vol. 4, pp. 195–199. Plenum Press, New York.

    Chapter  Google Scholar 

  11. Ord, J. M., and Wildenthal, K. 1980. Increased release of δ-aminolevulinic acid from protein during inhibition of protein synthesis in heart: Evidence for the extensive reutilization of heme in cardiac protein metabolism. Biochem. Biophys. Res. Commun. 93:577–582.

    Article  PubMed  CAS  Google Scholar 

  12. Rannels, D. R., Kao, R., and Morgan, H. E. 1975. Effect of insulin on protein turnover in heart muscle. J. Biol. Chem. 250:1694–1701.

    PubMed  CAS  Google Scholar 

  13. Ridout, R. M., Decker, R. S., and Wildenthal, K. 1978. Chloroquine-induced lysosomal abnormalities in cultured foetal mouse hearts. J. Mol. Cell. Cardiol. 10:175–183.

    Article  PubMed  CAS  Google Scholar 

  14. Seglen, P. O., and Gordon, P. B. 1982. Methyladenine: Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 79:1889–1892.

    Article  PubMed  CAS  Google Scholar 

  15. Ward, W. F., Chua, B. L., Li, J. B., Morgan, H. E., and Mortimore, G. E. 1979. Inhibition of basal and deprivation-induced proteolysis by leupeptin and pepstatin in perfused rat liver and heart. Biochem. Biophys. Res. Commun. 87:92–98.

    Article  PubMed  CAS  Google Scholar 

  16. Wibo, M., and Poole, B. 1974. Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. J. Cell Biol. 63:430–440.

    Article  PubMed  CAS  Google Scholar 

  17. Wildenthal, K. 1971. Long-term maintenance of spontaneously beating mouse hearts in organ culture. J. Appl. Physiol. 30:153–157.

    PubMed  CAS  Google Scholar 

  18. Wildenthal, K., and Crie, J. S. 1980. The role of lysosomes and lysosomal enzymes in cardiac protein turnover. Fed. Proc. Fed. Am. Soc. Exp. Biol. 39:37–41.

    CAS  Google Scholar 

  19. Wildenthal, K., and Crie, J. S. 1980. Lysosomes and cardiac protein catabolism. In: K. Wildenthal (ed.), Degradative Processes in Heart and Skeletal Muscle. pp. 113–129. North-Holland, Amsterdam.

    Google Scholar 

  20. Wildenthal, K., Dees, J. H., and Buja, L. M. 1977. Cardiac lysosomal derangements in mouse heart after long-term exposure to nonmetabolizable sugars Circ. Res. 40:26–35

    Article  PubMed  CAS  Google Scholar 

  21. Wildenthal, K., Griffin, E. E., and Ingwall, J. S. 1976. Hormonal control of cardiac protein and amino acid balance. Circ. Res. 38(Suppl. 1):138–144.

    Google Scholar 

  22. Wildenthal, K., Wakeland, J. R., Morton, P. C., and Griffin, E. E. 1978. Inhibition of protein degradation in mouse hearts by agents that cause lysosomal dysfunction. Circ. Res. 42:787–792.

    Article  PubMed  CAS  Google Scholar 

  23. Wildenthal, K., Wakeland, J. R., Ord, J. M., and Stull, J. T. 1980. Interference with lysosomal proteolysis fails to reduce cardiac myosin degradation. Biochem. Biophys. Res. Commun. 96:793–798.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wildenthal, K., Crie, J.S., Ord, J.M., Wakeland, J.R. (1985). The Role of Lysosomes and Microtubules in Cardiac Protein Degradation. In: Harris, P., Poole-Wilson, P.A. (eds) Advances in Myocardiology. Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1287-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1287-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1289-6

  • Online ISBN: 978-1-4757-1287-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics