Event-Related Synchronization and Desynchronization of Alpha and Beta Waves in a Cognitive Task

  • Gert Pfurtscheller
  • Wolfgang Klimesch
Part of the Brain Dynamics book series (BD)


Together with the discovery of alpha waves in human scalp electroencephalograms (EEG) by Berger (1930), blocking was reported in response to a light stimulation. Triggered by the pioneering research of Berger, other groups focused on blocking or desynchronization of alpha and beta waves after visual afferences as well as after somatosensory stimulation or movement (Jasper and Andrews 1938; Jasper and Penfield 1949; Gastaut et al., 1952; Chatrian et al., 1959). Besides these findings of alpha or beta wave attenuation after sensory stimulation or with voluntary movement, there were also reports of an enhancement of alpha band activity as a response to visual stimulation (Morrell, 1966; Creutzfeldt et al., 1969) and tactile stimulation (Kreitman and Shaw, 1965).


Visual Stimulation Reading Task Alpha Rhythm Alpha Band Alpha Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen P, Andersson SA (1968): Thalamic origin of cortical rhythmic activity. In: The Neuronal Generation of the EEG. Handbook of Electroencephalography and Clinical Neurophysiology, Creutzfeldt O, ed. Amsterdam: Elsevier, 2c: 90–118Google Scholar
  2. Aranibar A, Pfurtscheller G (1978): On and off effects in the background EEG during one-second photic stimulation. Electroencephalogr Clin Neurophysiol 44: 307–316CrossRefGoogle Scholar
  3. Berger H (1930): Über das Elektrenkephalogramm des Menschen II . J Psychol Neurol 40: 160–179Google Scholar
  4. Buchsbaum MS, Rigal F, Coppola R, Cappelleti J, King AC, Johnson J (1982): A new system for gray-level surface distribution maps of electrical activity. Electroencephalogr Clin Neurophysiol 53: 237–242CrossRefGoogle Scholar
  5. Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988): Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8(11): 4007–4026Google Scholar
  6. Chatrian GE, Petersen MC, Lazarte JA (1959): The blocking of the rolandic wicket rhythm and some central changes related to movement. Electroencephalogr Clin Neurophysiol 11: 497–510CrossRefGoogle Scholar
  7. Cooper R, Winter AL, Crow HJ, Walter WG (1965): Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroencephalogr Clin Neurophysiol 18: 217–228CrossRefGoogle Scholar
  8. Creutzfeldt O, Grünewald G, Simonova O, and Schmitz H (1969): Changes of the basic rhythms of the EEG during the performance of mental and visuomotor tasks. In: Attention in Neurophysiology, Evans CR, Mulholland TB, eds. London: Butterworth, pp 148–168Google Scholar
  9. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988): Coherent Oscillations: A Mechanism of feature linking in the visual cortex? Biol Cybern 60: 121–130CrossRefGoogle Scholar
  10. Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1989): A neural network for feature linking via synchronous activity: results from cat visual cortex and from simulations. In: Models of Brain Function, Cotterill RMJ, ed. Cambridge: University Press, 255–272Google Scholar
  11. Galin D, Johnstone J, Herron J (1978): Effects of task difficulty on EEG measures of cerebral engagement. Neuropsychologia 16:461–472CrossRefGoogle Scholar
  12. Gastaut H, Terzian H, Gastaut Y (1952): Etude d’une activité électroencéphalographique méconnue: le rythme rolandique en arceau. Marseille Méd 89: 296–310Google Scholar
  13. Gray CM, König P, Engel AK, and Singer W (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334–335CrossRefGoogle Scholar
  14. Gray CM, Singer W (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86: 1698–1702CrossRefGoogle Scholar
  15. Hubel DH, Wiesel TN (1962): Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J Physiol 160: 106–154Google Scholar
  16. Jasper HH, Andrews HL (1938): Electroencephalography III. Normal differentiations of occipital and precentral regions in man. Arch Neurol Psychiatr 39: 96–115Google Scholar
  17. Jasper HH, Penfield W (1949): Electrocorticograms in man: effect of the voluntary movement upon the electrical activity of the precentral gyrus. Arch Psychiatr Z Neurol 183: 163–174CrossRefGoogle Scholar
  18. Klimesch W (1988): Struktur und Aktivierung des Gedächtnisses: Das Vernetzungsmodell: Grundlagen und Elemente einer übergreifenden Theorie. Toronto—Bern: HuberGoogle Scholar
  19. Klimesch W, Pfurtscheller G, Mohl W (1988): ERD mapping and long-term memory: the temporal and topographical pattern of cortical activation. In: Functional Brain Imaging, Pfurtscheller, G, Lopes da Silva FH, eds. Toronto: Huber, pp 131–141Google Scholar
  20. Klimesch W, Pfurtscheller G, Mohl W, Schimke H (1990a): Event-related desynchronization, ERD mapping and hemispheric differences for words and numbers. Int J Psycho physiol 8: 297–308CrossRefGoogle Scholar
  21. Klimesch W, Pfurtscheller G, Schimke H, and Mohl W (1990b): Pre- and poststimulus processes in semantic classification as measured by event-related desynchronization. J Psychophsiol in pressGoogle Scholar
  22. Kreitman N, Shaw JC (1965): Experimental enhancement of alpha activity. Electroencephalogr Clin Neurophysiol 18: 147–155CrossRefGoogle Scholar
  23. Lopes da Silva FH, van Lierop THMT, Schrijver CF, Storm van Leeuwen W (1973a): Organization of thalamic and cortical alpha rhythms: spectra and coherences. Electroencephalogr Clin Neurophysiol 35: 627–639CrossRefGoogle Scholar
  24. Lopes da Silva FH, van Lierop THMT, Schrijver CF, Storm van Leeuwen W (1973b): Essential differences between alpha rhythms and barbiturate spindles: spectra and thalamo-cortical coherences. Electroencephalogr Clin Neurophysiol 35: 641–645CrossRefGoogle Scholar
  25. Morrell LK (1966): Some characteristics of stimulus provoked alpha activity. Electroencephalogr Clin Neurophysiol 21: 552–561CrossRefGoogle Scholar
  26. Moruzzi G, Magoun HW (1949): Brainstem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1: 455–473Google Scholar
  27. Ornstein R, Johnstone J, Herron J, Swencionis C (1980): Differential right hemisphere engagement in visuospatial tasks. Neuropsychologia 18: 49–64CrossRefGoogle Scholar
  28. Pfurtscheller G, Aranibar A (1977): Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencepalogr Clin Neurophysiol 42: 817–826CrossRefGoogle Scholar
  29. Pfurtscheller G, Aranibar A (1979): Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol 46: 138–146CrossRefGoogle Scholar
  30. Pfurtscheller G (1981): Central beta rhythm during sensory motor activities in man. Electroencephalogr Clin Neurophysiol 51: 253–264CrossRefGoogle Scholar
  31. Pfurtscheller G, Schwarz G, Pfurtscheller B, List W (1983): Quantification of spindles in comatose patients. Electroencephalogr Clin Neurophysiol 56: 114–116CrossRefGoogle Scholar
  32. Pfurtscheller G, Steffan J, Maresch H (1988): ERD mapping and functional topography: temporal and spatial aspects. In: Functional Brain Imaging, Pfurtscheller G, Lopes da Silva FH, eds. Toronto: Huber, pp. 117–130Google Scholar
  33. Pfurtscheller G, Berghold A (1989): Patterns of cortical activation during planning of voluntary movement. Electroencephalogr Clin Neurophysiol 72: 250–258CrossRefGoogle Scholar
  34. Pfurtscheller G, and Klimesch W (1989): Cortical activation pattern during reading and semantic classifications studied with dynamic ERD mapping. In: Topographic Brain Mapping of EEG and Evoked Potentials, Maurer K, ed. Berlin: Springer, pp 303–313CrossRefGoogle Scholar
  35. Rougeul A, Corvisier J, Letalle A (1974): Rythmes electrocorticaux caracteristiques de l’installation du sommeil naturel chez le chat. Leurs rapports avec le comportement moteur. Electroencephalogr Clin Neurophysiol 37:41–57CrossRefGoogle Scholar
  36. Rougeul A, Bouyer JJ, Dedet L, Debray O (1979): Fast somato-parietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. Electroencephalogr Clin Neurophysiol 46: 310–319CrossRefGoogle Scholar
  37. Sergeant J, Geuze R, van Winsum W (1987): Event-related desynchronization and P300. Psychophysiology 24(3): 272–277CrossRefGoogle Scholar
  38. Steriade M, Llinas RR (1988): The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68(3): 649–742Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Gert Pfurtscheller
  • Wolfgang Klimesch

There are no affiliations available

Personalised recommendations