The Rhythmic Slow Activity (Theta) of the Limbic Cortex: An Oscillation in Search of a Function

  • Fernando Lopes da Silva
Part of the Brain Dynamics book series (BD)


The existence of a prominent electroencephalogram (EEG) activity within the theta frequency range (4–7 Hz) in the hippocampus has been one of the most studied rhythmic activities of the mammalian brain. However, in lower mammals the hippocampal EEG has a wider frequency range and may extend from 3 to 4 Hz up to 10 to 12 Hz. Therefore, it has become current practice to name this EEG activity Rhythmic Slow Activity (RSA), in order to avoid the term theta rhythm, which does not cover the entire frequency range within which the hippocampal EEG of lower animals may fall. Several reviews on RSA, particularly in relation to behavior, have appeared (Ishizuka et al., 1990; Komisaruk, 1977; Lopes da Silva and Arnolds, 1978; Robinson, 1980; Vanderwolf and Robinson, 1981). Robinson (1980) discussed in particular the influence of species differences on RSA. In this respect, a controversial point is whether hippocampal RSA occurs also in humans. Single cases have been reported in which hippocampal RSA was observed in man (Giaquinto, 1973), but Halgren et al. (1985) were not able to find RSA in recordings in humans. However, using spectral analysis, Arnolds et al. (1980) were able to demonstrate RSA in the hippocampus of epileptic patients. This RSA presented a dominant low frequency (about 3–4 Hz), which was modulated with behavior in a similar way as in lower mammals.


Dentate Gyrus Pyramidal Cell Entorhinal Cortex Theta Rhythm Limbic Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anden NE, Dahlstrõm K, Fuxe K, Larsson K, Olson L, Ungerstedt U (1966): Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol Scand 67:313–326CrossRefGoogle Scholar
  2. Apostol G, Creutzfeldt OD (1974) Cross correlation between the activity of septal units and hippocampal EEG during arousal. Brain Res 67 : 65–75CrossRefGoogle Scholar
  3. Arezzo JC, Tenke CE, Vaughan HG Jr (1987): Movement-related potentials within the hippocampal formation of the monkey. Brain Res 401 : 79–86CrossRefGoogle Scholar
  4. Arnolds DEAT, Lopes da Silva FH, Aitink JW, Kamp A (1979a): Hippocampal EEG and behaviour. I. Hippocampal EEG correlates of gross motor behaviour in dog. Electroencephalogr Clin Neurophysiol 46 : 552–570CrossRefGoogle Scholar
  5. Arnolds DEAT, Lopes da Silva FH, Aitink JW, Kamp A (1979b): Hippocampal EEG and behaviour. II. Hippocampal EEG correlates of elementary motor acts in dog. Electroencephalogr Clin Neurophysiol 46 : 571–580CrossRefGoogle Scholar
  6. Arnolds DEAT, Lopes da Silva FH, Aitink JW, Kamp A (1979c): Hippocampal EEG and behaviour. III. Hippocampal EEG correlates of stimulus response tasks and of sexual behaviour in dog. Electroencephalogr Clin Neurophysiol 46 : 581–591CrossRefGoogle Scholar
  7. Arnolds DEAT, Lopes da Silva FH, Aitink JW, Kamp A, Boeijinga P (1980): The spectral properties of hippocampal EEG related to behavior in man. Electroencephal o gr Clin Neuro ph ysiol 50 : 324–328CrossRefGoogle Scholar
  8. Artemenko DP (1972): Role of hippocampal neurons in theta-wave generation. Neurophysiology 4: 531–539Google Scholar
  9. Assaf SY, JJ Miller (1978): The role of a raphe serotonin system in the control of septal unit activity and hippocampal desynchronization. Neuroscience 3: 539–550CrossRefGoogle Scholar
  10. Babloyantz A (1985): Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys Lett (A) 111 : 152–156CrossRefGoogle Scholar
  11. Ben-Ari Y, Knrjevìc K, Reinhardt W, Ropert N (1981): Intracellular observations on disinhibitory action of acetylcholine in hippocampus. Neuroscience 6: 2445–2463CrossRefGoogle Scholar
  12. Bland BH, Andersen P, Ganes T (1975): Two generators of hippocampal theta activity in rabbits. Brain Res 94:199–218CrossRefGoogle Scholar
  13. Bland BH, Whishaw IQ (1976): Generators and topography of hippocampal theta (RSA) in the anaesthetized and freely moving rat. Brain Res 118 : 259–280CrossRefGoogle Scholar
  14. Boeijinga PH, Pennartz CMA, Lopes da Silva FH (1990): Paired-pulse facilitation in the nucleus accumbens following stimulation of subicular inputs in the rat. Neuroscience 35 : 301–311CrossRefGoogle Scholar
  15. Buzsaki, G, Eidelberg (1983) Phase relations of hippocampal projection cells and intereneurons to theta activity in the anesthetized rat. Brain Res. 226 : 334–339CrossRefGoogle Scholar
  16. Buzsàki G, Grastyàn E, Czopf J, Kellènyi L, Prohaska O (1981): Changes in neuronal transmission in the rat hippocampus during behavior. Brain Res 225 : 235–247CrossRefGoogle Scholar
  17. Buzsàki G, Leung LW-S, Vanderwolf CH (1983): Cellular bases of hippocampal EEG in the behaving rat. Brain Res Rev 6:139–171CrossRefGoogle Scholar
  18. Coenen AML (1975): Frequency analysis of rat hippocampal electrical activity. Physiol Behav 14:391–394CrossRefGoogle Scholar
  19. Crowne DP, Radcliffe D (1975): Some characteristics and functional relations of the electrical activity of the primate hippocampus and hypotheses of hippocampal function. In: Ihe Hippocampus, Isaacson RL, Pribam KH, eds. New York: Plenum Press, vol. 2, 185–203CrossRefGoogle Scholar
  20. Feenstra BWA, Holsheimer J (1979): Dipole-like neuronal sources of theta rhythm in dorsal hippocampus, dentate gyrus and cingulate cortex of the urethaneanesthetized rat. Electroencephalogr Clin Neurophysiol 47 : 532–538CrossRefGoogle Scholar
  21. Fuxe K, Johnsson G (1974): Further mapping of central 5-hydroxytryptamine neurons: studies with the neurotoxic dihydroxytryptamines. Adv Biochem Psychopharmacol 10:1–12Google Scholar
  22. Gaztelu JM, Buño W (1982) Septo-hippocampal relationships during EEG theta rhythm. Electroencephalogr clin Neurophysiol 54 : 375–387CrossRefGoogle Scholar
  23. Giaquinto S (1973): Sleep recordings from limbic structures in man. Confin Neurol 35:285–303CrossRefGoogle Scholar
  24. Green JD, Maxwell DS, Schindler WJ, Stumpf C (1960): Rabbit EEG “theta” rhythm: its anatomical source and relation to activity in single neurons. J Neurophysiol 23 : 403–420Google Scholar
  25. Green KF, Rawlins JNP (1979): Hippocampal theta in rats under urethane: generators and phase relations. Electroencephalogr Clin Neurophysiol 47 : 420–429CrossRefGoogle Scholar
  26. Greenstein YJ, Pavlides C, Winson J (1988): Long-term potentiation in the dentate gyrus is preferentially induced at theta rhythm periodicity. Brain Res 438 : 331–334CrossRefGoogle Scholar
  27. Halgren E, Smith ME, Stapleton JM (1985): Hippocampal field-potentials evoked by repeated v.s. nonrepeated words. In: Electrical Activity of the Archicortex, Buszáki G, Vanderwolf CH, eds. Budapest: Akadémiai Kiadó, 67Google Scholar
  28. Halliwell JV, Adams PR (1982): Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250 : 71–92CrossRefGoogle Scholar
  29. Holsheimer J, Boer JJ, Lopes da Silva FH, Van Rotterdam A (1982): The douple dipole model of theta rhythm generation: simulation of laminar field potential profiles in dorsal hippocampus of the rat. Brain Res 235 : 31–50CrossRefGoogle Scholar
  30. Holsheimer J, Feenstra BWA, Nijkamp JM (1979): Distribution of field potentials and their relationships during theta and beta activity in the hippocampus and the overlying neocortex of the rat. In: Origin of Cerebral Field Potentials, Speckmann EJ, Caspers H, eds. Stuttgart: Thieme, pp 98–114Google Scholar
  31. Hounsgaard J (1978): Presynaptic inhibitory action of acetylcholine in area CA 1 of the hippocampus. Exp Neurol 62 : 787–797CrossRefGoogle Scholar
  32. Ishizuka N, Weber J, Amaral DG (1990): Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol 295 : 580–623CrossRefGoogle Scholar
  33. Irmis F (1976): Hippocampal rhythmic slow theta activity in relation to certain muscle movements. Electroencephalogr Clin Neurophysiol 41 : 553Google Scholar
  34. Kamphuis W, Huisman E, Wadman WJ, Heizmann CW, Lopes da Silva FH (1989): Kindling induced changes in parvalbumin immunoreactivity in rat hippocampus and its relations to long-term decrease in GABA-immunoreactivity. Brain Res 479: 23–34CrossRefGoogle Scholar
  35. Komisaruk BR (1977): The role of rhythmical brain activity in sensorimotor integration. In: Progress in Psychobiology and Physiological Psychobiology, Sprague JM, Epstein AN, eds. New York Academic Press, vol. 7, pp. 55–90Google Scholar
  36. Konopacki J, Bland BH, MacIver MB, Roth SH (1987a): Cholinergic theta rhythm in transected hippocampal slices: independent CA 1 and dentate generators. Brain Res 436 : 217–222CrossRefGoogle Scholar
  37. Konopacki J, MacIver MB, Bland BH, Roth SH (1987b): Carbachol-induced EEG “theta” activity in hippocampal brain slices. Brain Res 405 : 196–198CrossRefGoogle Scholar
  38. Larson J, Lynch G (1988): Role of N-methyl-D-aspartate receptors in the induction of synaptic potentiation by burst stimulation patterned after the hippocampal theta rhythm. Brain Res 441:111–118CrossRefGoogle Scholar
  39. Larson J, Wong D, Lynch G (1986): Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368: 347–350CrossRefGoogle Scholar
  40. Leung L-WS (1980): Behavior-dependent evoked potentials in the hippocampal CA 1 region of the rat. I. Correlation with behavior and EEG . Brain Res 198 : 95–117CrossRefGoogle Scholar
  41. Leung L-WS (1984a): Model of gradual phase shift of theta rhythm in the rat. J. Neurophysiol 52 :1051–1065Google Scholar
  42. Leung L-WS (1984b): Pharmacology of theta phase shift in the hippocampal CA 1 region of freely moving rats. Electroencephalogr Clin Neurophysiol 58 :457–466CrossRefGoogle Scholar
  43. Leung L-WS, Lopes da Silva FH, Wadman WJ (1982): Spectral characteristics of the hippocampal EEG in the freely moving rat. Electroencephalogr Clin Neurophysiol 54 : 203–219CrossRefGoogle Scholar
  44. Llinás RR (1988): The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242 : 1654–1664CrossRefGoogle Scholar
  45. Lopes da Silvra, F.H. (1991): Neural mechanisms underlying brain waves: from neural membrane to networks, Electroencephalogr Clin Neurophysiol 79 : 81–93CrossRefGoogle Scholar
  46. Lopes da Silva FH, Arnolds DEAT (1978): Physiology of the hippocampus and related structures. Annu Rev Physiol 36:291–301Google Scholar
  47. Lopes da Silva FH, Arnolds DEAT, Neijt HC (1984): A functional link between the limbic cortex and ventral striatum: physiology of the subiculum-accumbens pathway. Exp Brain Res 55 :205–214Google Scholar
  48. Lopes da Silva FH, Kamp A (1969): Hippocampal theta frequency shifts and operant behaviour. Electroencephalogr Clin Neurophysiol 26 : 133–143CrossRefGoogle Scholar
  49. Lopes da Silva FH, van Rotterdam A, van Heuden E, Burr W (1976): Models of neuronal populations: The basic mechanisms of rhythmicity. In: Perspectives in Brain Research, Corner MA, Swaab DF, eds. Progr Brain Res 45 : 281–308CrossRefGoogle Scholar
  50. Lopes da Silva FH, Witter MP, Boeijinga PH, Lohman AHM (1990): Anatomical organisation and physiology of the limbic cortex. Physiol Rev 70:453–511.Google Scholar
  51. MacVicar BA, Dudek FE (1980): Local synaptic circuits in rat hippocampus: interactions between pyramidal cells. Brain Res 184 : 220–223CrossRefGoogle Scholar
  52. MacVicar BA, Tse FWY (1989): Local neuronal circuitry underlying cholinergic rhythmical slow activity in CA3 area of rat hippocampal slices. J. Physiol 417 : 197–212Google Scholar
  53. McLennan H, Miller JJ (1976): Frequency-related inhibitory mechanisms controlling rhythmical activity in the septal area. J Physiol (Lond) 254 : 827–841Google Scholar
  54. Miles R, Wong RKS (1986): Excitatory synaptic interactions between CA3 neurons in the guinea-pig hippocampus in vitro. J Physiol (Lond) 373 : 397–418Google Scholar
  55. Nuñez A, Garcia-Austt E, Buño W Jr (1987): Intracellular 0-rhythm generation in identified hippocampal pyramids. Brain Res 416 : 289–300CrossRefGoogle Scholar
  56. Paiva T, Lopes da Silva FH, Mollevanger W (1976): Modulating systems of hippocampal EEG. Electroencephalogr Clin Neurophysiol 40 : 470–480CrossRefGoogle Scholar
  57. Pavlides C, Greenstein YJ, Goudman M, Winson J (1988): Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. Brain Res 439 : 383–387CrossRefGoogle Scholar
  58. Petsche H, Stumpf Ch, Gogolák G (1962): The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. The contral of hippocampus arousal activity by septum cells. Electroencephalogr Clin Neurophysiol 14: 202–211CrossRefGoogle Scholar
  59. Pijn JPM (1990): Quantitative evaluation of EEG signals in epilepsy-nonlinear associations, time delays and nonlinear dynamics. Ph.D. Thesis, University of Amsterdam.Google Scholar
  60. Pijn, JP, van Nerveen, J, Noest A, Lopes da Silva FH (1991) Chaos or noise in EEG signals; dependence on state and brain site. Electroencephalogr Clin Neurophysiol 79:371–381CrossRefGoogle Scholar
  61. Rawlins JNP (1985): Associations across time: the hippocampus as a temporary memory store. Behav Brain Sci 8:479–496CrossRefGoogle Scholar
  62. Robinson TE (1980): Hippocampal rhythmic slow activity (RSA; theta): A critical analysis of selected studies and discussion of possible species-differences. Brain Res Rev 2 : 69–101CrossRefGoogle Scholar
  63. Rose GM, Dunwiddie TV (1986): Induction of hippocampal long-term potentiation using physiologically patterned stimulation. Neurosci Lett 69 : 244–248CrossRefGoogle Scholar
  64. Rudell AP, Fox SE, Ranck JB Jr (1980): Hippocampal excitability phase-locked to theta rhythm in waking rats. Exp Neurol 68 : 87–96CrossRefGoogle Scholar
  65. Sainsbury RS (1970): Hippocampal activity during natural behaviour in the guineapig. Physiol Behav 5:317–324CrossRefGoogle Scholar
  66. Steriade M, Gloor P, Llinás RR, Lopes da Silva FH, Mesulam M (1990): Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 76 : 481–508CrossRefGoogle Scholar
  67. Traub RD, Miles R, Wong RKS (1989): Model of the origin of rhythmic population oscillations in the hippocampal slice. Science 243 :1319–1325.CrossRefGoogle Scholar
  68. Vanderwolf CH (1969): Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26:407–418CrossRefGoogle Scholar
  69. Vanderwolf CH (1975): Neocortical and hippocampal activation in relation to behav- ior: effects of atropine, eserine, phenothiazines and amphetamine. J Comp Physiol Psychol 88 : 300–323CrossRefGoogle Scholar
  70. Vanderwolf CH, Baker GB (1986): Evidence that serotonin mediates noncholinergic neocortical low voltage fast activity, non-cholinergic hippocampal rhytmical slow activity and contributes to intelligent behavior. Brain Res 374 : 342–356CrossRefGoogle Scholar
  71. Vanderwolf CH, Kramis R, Robinson TE (1978): Hippocampal electrical activity during waking behaviour and sleep: analyses using centrally acting drugs. In: Functions of the Septo-Hippocampal System, Ciba Foundation Symposium 58 (new series). Amsterdam: Excerpta MedicaGoogle Scholar
  72. Vanderwolf CH, Leung L-WS (1983): Hippocampal rhythmical slow activity: a brief history and the effects of entorhinal lesions and phencyclindine. In: Neurobiology of the Hippocampus, Seifert W, ed. London: Academic Press, pp 275–302Google Scholar
  73. Vanderwolf CH, Leung L-WS, Cooley RK (1985a): Pathways through the cingulate, neo- and entorhinal cortices mediating atropine-resistant hippocampal rhythmical slow activity. Brain Res 347 : 58–73CrossRefGoogle Scholar
  74. Vanderwolf CH, Leung L-WS, Stewart DJ (1985b): Two afferent pathways mediating hippocampal rhythmical slow activity. In: Electrical Activity of the Archicortex, Buzsàki G, Vanderwolf CH, eds. Budapest: Akadémiai Kiadó, pp 47–66Google Scholar
  75. Vanderwolf CH, Robinson TE (1981): Reticulo-cortical activity and behavior: A critique of the arousal theory and a new synthesis. Behav Brain Sci 4: 459–514CrossRefGoogle Scholar
  76. Vinogradova OS, Brazhnik ES, Karanov AN, Zhadina SD (1980): Analysis of neuronal activity in rabbit’s septum with various conditions of deafferentiation. Brain Res 187:354–368CrossRefGoogle Scholar
  77. Whishaw IQ, Kolb B (1979): Neocortical and hippocampal EEG in rats during lateral hypothalamic lesion-induced hyperkinesia: relations to behavior and effects of atropine. Physiol Behav 22 : 1107–1113CrossRefGoogle Scholar
  78. Wilson CL, Motter BC, Lindsley DB (1976): Influences of hypothalamic stimulation upon septal and hippocampal electrical activity in the cat. Brain Res 107 : 55–68CrossRefGoogle Scholar
  79. Winson J (1974): Patterns of hippocampal theta rhythm in the freely moving rat. Electroencephalogr Clin Neurophysiol 36 : 291–301CrossRefGoogle Scholar
  80. Winson J (1976a): Hippocampal theta rhythm. I. Depth profiles in the curarized rat . Brain Res 103 : 57–70CrossRefGoogle Scholar
  81. Winson J (1976b): Hippocampal theta rhythm. II. Depth profiles in the freely moving rabbit. Brain Res 103 : 71–79CrossRefGoogle Scholar
  82. Winson J (1984): Neuronal transmission through the hippocampus: Dependence on behavioural state. In: Cortical Integration, Reinoso-Suárez F, Ajmone-Marsan C, eds. New York: Raven Press, p 131Google Scholar
  83. Winson J (1986): Behaviorally dependent neuronal gating in the hippocampus. In: The Hippocampus, Isaacson RL, Pribram KH, eds. New York: Plenum Press, vol. 4, pp 77–92CrossRefGoogle Scholar
  84. Winson J, Abzug C (1978a): Neuronal transmission through hippocampal pathways dependent on behavior. J Neurophysiol 41 : 716–732Google Scholar
  85. Winson J, Abzug C (1978b): Dependence upon behavior of neuronal transmission from perforant pathway through entorhinal cortex. Brain Res 147 : 422–427CrossRefGoogle Scholar
  86. Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AHM (1989): Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33 :161–253CrossRefGoogle Scholar
  87. Wong RKS, Traub RD (1983): Synchronized burst discharge in the disinhibited hippocampal slice. I. Initiation in the CA2-CA3 region. J Neurophysiol 49 : 442–458Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Fernando Lopes da Silva

There are no affiliations available

Personalised recommendations