Stimulus-Specific Synchronizations in Cat Visual Cortex: Multiple Microelectrode and Correlation Studies from Several Cortical Areas

  • Reinhard Eckhorn
  • Thomas Schanze
  • Michael Brosch
  • Wageda Salem
  • Roman Bauer
Part of the Brain Dynamics book series (BD)


It might be imagined that the recently observed synchronizations among neurons of cat visual cortex are epiphenomena or side products of cellular properties with no causal significance for visual signal processing. Our working hypothesis, on the contrary, assumes that synchronization of neural activities forms the basis of a flexible mechanism for feature linking in sensory systems. Specified for the visual system, the hypothesis states that the receptive field properties of visual neurons in different parts ol the visual system can be linked into a perceptual whole by synchronizing the activities of those neurons that are activated by a coherent visual stimulus. We further assume that synchronization among the activities in distributed neural assemblies is internally enhanced or even generated via a specific linking (association) network that connects corresponding and noncorresponding locations of the cortical representations of visual space.


Visual Cortex Receptive Field Recording Position Single Unit Activity Visual Cortical Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnett DW (1975): Correlation analysis of units recorded in the cat dorsal lateral geniculate nucleus. Exp Brain Res 24: 111–130CrossRefGoogle Scholar
  2. Başar E (1980): EEG—Brain Dynamics. Amsterdam–New York–Oxford: Elsevier, North-Holland Biomedical PressGoogle Scholar
  3. Başar E (1983): Synergetics of neuronal populations. A survey on experiments; In: Synergetics of the Brain, Başar E, Flohr H, H Haken, Mandell A, eds. Berlin– Heidelberg, New York: Springer-Verlag, 183–200Google Scholar
  4. Başar E (1988): EEG—dynamics and evoked potentials in sensory and cognitive processing by the brain. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Heidelberg Springer-Verlag, pp 30–55Google Scholar
  5. Brosch M, Bauer R, Eckhorn R (1990): The spatial distribution of stimuli evoking oscillations of neural responses in the visual cortex of the cat. In: Brain and Perception, Elsner N, Roth G, eds. Stuttgart–New York: Thieme, p 236Google Scholar
  6. Brosch M, Bauer R, Eckhorn R (1991): Spatial correlation profiles of stimulus-induced oscillatory activities in cat visual cortex. In: Synapse–Transmission–Modulation, Elsner N, Penzlin H, eds. Stuttgurt–New York: Thieme, p 214Google Scholar
  7. Bullier J, Kennedy H, Salinger W (1984): Branching and laminar origin of projections between visual cortical areas in the cat. J Comp Neurol 228: 329–341CrossRefGoogle Scholar
  8. Bullier J, McCourt ME, Henry GH (1988): Physiological studies on the feedback connection to the striate cortex from cortical areas 18 and 19 of the cat. Exp Brain Res 70: 90–98Google Scholar
  9. Bullock TH (1988): Compound potentials of the brain, ongoing and evoked: perspectives from comparative neurology. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Heidelberg Springer-Verlag, pp 3–18Google Scholar
  10. Chagnac-Amitai Y, Connors BW (1989): Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 62: 1149–1162Google Scholar
  11. Cracco RQ, Cracco JB (1978): Visual evoked potentials in man: early oscillatory potentials. Electroencephalogr Clin Neurophysiol45: 731–739 CrossRefGoogle Scholar
  12. Creutzfeldt OD, Watanabe S, Lux HD (1966): Relation between EEG-phenomena and potentials of single cells. Part I and II. Electroencephalogr Clin Neuro ph ysiol 20:1–37CrossRefGoogle Scholar
  13. Damasio AR (1989a): The brain binds entities and events by multiregional activation from convergence zones. Neur Comput1:121–129 CrossRefGoogle Scholar
  14. Damasio AR (1989b): Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition 33: 25–62CrossRefGoogle Scholar
  15. Eckhorn R (1991): Stimulus-evoked synchronizations in the visual cortex: linking of local features into global figures? In: Springer Series in Synergetics, Krüger J, ed. Neuronal Cooperativity Berlin-Heidelberg—Springer-Verlag, pp 184–224Google Scholar
  16. Eckhorn R, Arndt M, Dicke P, Stöcker M, Reitboeck HJ (1992a): Feature linking by stimulus-induced synchronizations of model neurons. In: Induced Rhythms in the Brain, Başar E, Bullock TH, eds. Boston: Birkhauser Boston Inc.Google Scholar
  17. Eckhorn R, Bauer R, Brosch M, Jordan W, Kruse W, Munk M (1988a): Functionally related modules of cat visual cortex show stimulus-evoked coherent oscillations: a multiple electrode study. Invest Ophthalmol Vis Sci 29: 331,12Google Scholar
  18. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988b): Are form- and motion-aspects linked in visual cortex by stimulus-evoked resonances? Multiple electrode and cross-correlation analysis in cat visual cortex. EBBS-Workshop on Visual Processing of Form and Motion, Tübingen, Confer. Vol, p 7Google Scholar
  19. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988c): Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analysis in the cat. Biol Cybern 60:121–130CrossRefGoogle Scholar
  20. Eckhorn R, Bauer R, Reitboeck HJ (1989b): Discontinuities in visual cortex and possible functional implications: relating cortical structure and function with multielectrode/correlation techniques. Springer Series in Brain Dynamics 2, Başar E, Bullock TH, eds. Berlin-Heidelberg: Springer-Verlag, pp 267–278Google Scholar
  21. Eckhorn R, Brosch M, Salem W, Bauer R (1990b): Cooperativity between cat area 17 and 18 revealed with signal correlations and HRP. In: Brain and Perception, Elsner N, Roth G, eds. Stuttgart—New York: Thieme p 237Google Scholar
  22. Eckhorn R, Dicke OP, Kruse W, Reitboeck HJ (1991): Stimulus-related facilitation and synchronization among visual cortical areas: experiments and models. In: Nonlinear Dynamics and Neural Networks, Schuster HG, ed. Stuttgart: VCN-Verlag, pp 57–75Google Scholar
  23. Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1989a): A neural network for feature linking via synchronous activity: results from cat visual cortex and from simulations. In: Models of Brain Function, Cotterill, RMJ, ed. Cambridge University Press Cambridge (UK), pp 255–272Google Scholar
  24. Eckhorn R, Reitboeck HJ, Dicke P, Arndt M, Kruse W (1990a): Feature linking across cortical maps via synchronization. In: Parallel Processing in Neural Systems and Computers, Eckmiller R, eds. Düsseldorf (FRG), North Holland, Amsterdam New York, pp 101–104Google Scholar
  25. Eckhorn R, Schanze T (in press c): Possible neural mechanisms of feature linking in the visual system: stimulus-locked and stimulus-induced synchronizations. In: SelfOrganization, Emerging Properties and Learning, Babloyantz A, ed. New York: Plenum PressGoogle Scholar
  26. Eckhorn R, Schanze T, Reitboeck HJ (1991d): Neural mechanisms of flexible feature linking in sensory systems. In: Mathematical Approaches to Brain Functioning Diagnostics, Dvorak I., Holden AV, ed. Proceedings in Nonlinear Science Series, Manchester University Press, Manchester New York pp 407–428Google Scholar
  27. Engel AK, König P, Gray CM, Singer W (1990): Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by crosscorrelation analysis. Eur J Neurosci 2: 588–606CrossRefGoogle Scholar
  28. Engel AK, König P, Kreiter AK, Singer W (1990): Inter-areal and inter-hemispheric synchronization of oscillatory responses in cat visual cortex. Soc Neurosci Abst 16: p 1269Google Scholar
  29. Ferrer JMR, Price DJ, Blakemore C (1988): The organization of cortico-cortical projections from area 17 to area 18 of the cat’s visual cortex. Proc. R Soc Lond B 233: 77–98CrossRefGoogle Scholar
  30. Fleischhauer K (1974): On different patterns of dendritic bundling in the cerebral cortex of the cat. Z Anat Entwickl Gesch 143: 115–126CrossRefGoogle Scholar
  31. Freeman W (1975): Mass Action in the Nervous System. New York: Academic PressGoogle Scholar
  32. Freeman W, Skarda CA (1985): Spatial EEG patterns, non-linear dynamics and perception: the Neo-Sherringtonian view. Brain Res Rev 10: 147–175CrossRefGoogle Scholar
  33. Ghose GM, Freeman RD (1990): Origins of oscillatory activity in the cat’s visual cortex. Soc Neurosci Abst 16: p 1270Google Scholar
  34. Gilbert CD (1985): Horizontal integrations in the neocortex. Trends Neurosci 8: 160–165CrossRefGoogle Scholar
  35. Gilbert CD, Wiesel TN (1983): Clustered intrinsic connections in cat visual cortex. J Neurosci 3: 1116–1133Google Scholar
  36. Gilbert CD, Wiesel TN (1987): Relationships between cortico-cortical projections, intrinsic cortical connections and orientation columns in cat primary visual cortex. Soc Neurosci Abst 13: 5.9Google Scholar
  37. Gray CM, Singer W (1987a): Stimulus-dependent neuronal oscillations in the cat visual cortex area 17. 2nd IBRO-Congress, Neurosci Suppl, p 1301Google Scholar
  38. Gray CM, Singer W (1987b): Stimulus specific neuronal oscillations in the cat visual cortex: a cortical functional unit. Soc Neurosci Abst 404.3Google Scholar
  39. Gray CM, König P, Engel AK, Singer W (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334–337CrossRefGoogle Scholar
  40. Hubel DH, Wiesel TN (1962): Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J Physiol 160:106–154Google Scholar
  41. Llinas RR (1988): The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242: 1654–1664CrossRefGoogle Scholar
  42. Mitzdorf U (1985): Current source density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65: 37–100Google Scholar
  43. Mitzdorf U (1987): Properties of the evoked potential generators: current sourcedensity analysis of visually evoked potentials in the cat cortex. Int J Neurosci 33: 33–59CrossRefGoogle Scholar
  44. Mountcastle VB (1978): An organizing principle for cerebral function: the unit module and the distributed system. In Edelman GM, Mountcastle VB, eds, The Mindful Brain, Cambridge, MA: MIT PressGoogle Scholar
  45. Nelson JI, Frost BJ (1985): Intracortical facilitation among cooriented, co-axially aligned simple cells in cat striate cortex. Exp Brain Res 61: 54–61CrossRefGoogle Scholar
  46. Nelson JI, Munk MHJ, Bullier J, Eckhorn R (1989): Functional connectivity revealed in and outside of receptive field overlap by 3 cross-correlation techniques. Soc Neurosci Abst 15 (2): p 1057Google Scholar
  47. Reitboeck HJ (1983a): A 19-channel matrix drive with individually controllable fiber microelectrodes for neurophysiological applications. IEEE SMC 13: 676–682Google Scholar
  48. Reitboeck HJ (1983b): Fiber microelectrodes for electrophysiological recordings. J Neurosci Meth 8: 249–262CrossRefGoogle Scholar
  49. Reitboeck HJ, Adamczak W, Eckhorn R, Muth P, Thielmann R, Thomas U (1981): Multiple single-unit recording: design and test of a 19-channel micro-manipulator and appropriate fiber electrodes. Neurosci Lett 7(Suppl): S148Google Scholar
  50. Schanze T, Eckhorn R, Baumgarten H (1990): Properties of stimulus-induced oscillatory events in cat visual cortex. In: Brain and Perception, Elsner N, Roth G, eds. Stuttgart—New York: Thieme p 238Google Scholar
  51. Sheer DE (1989): Sensory and cognitive 40-Hz event-related potentials: behavioral correlates, brain function, and clinical application. In: Springer Series in Brain Dynamics 2, Başar E, Bullock TH, eds. Berlin-Heidelberg-New York: Springer-Verlag pp 339–374Google Scholar
  52. Singer W, Gray CM, Engel A, König P (1988): Spatio-temporal distribution of stimulus-specific oscillations in the cat visual cortex II: global interactions. Soc Neurosci Abst 14:899Google Scholar
  53. Ts’o DY, Gilbert CD, Wiesel TN (1986): Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by crosscorrelation analysis. J Neurosci 6: 1160–1170Google Scholar
  54. Zeki S, Shipp S (1988): The functional logic of cortical connections, Nature 335: 311–317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Reinhard Eckhorn
  • Thomas Schanze
  • Michael Brosch
  • Wageda Salem
  • Roman Bauer

There are no affiliations available

Personalised recommendations