Skip to main content

Brain Natural Frequencies are Causal Factors for Resonances and Induced Rhythms

  • Chapter
Induced Rhythms in the Brain

Part of the book series: Brain Dynamics ((BD))

Abstract

The rationale of writing this epilogue is to help my own thinking about the results and discussions presented in the foregoing chapters. I do not aim to give a comprehensive account of all the chapters presented and all the ideas included in this book. Bullock has written most relevant introductory remarks, and I refer to his chapter for opening comment, chronology, and remarks about the chapters of the present volume.

With editorial assistance by Martin Schürmann

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey WR, Dunlop CW, Hendrix CE (1960): Hippocampal slow waves: distribution and phase relations in the course of approach learning. Arch Neurol 3: 74–90

    Article  Google Scholar 

  • Adey WR (1989): Do EEG-like Processes Influence Brain Function at a Physiological Level? In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin-Heidelberg: Springer-Verlag, pp 362–367

    Google Scholar 

  • Adrian ED (1941): Afferent discharges to the cerebral cortex from peripheral sense organs. J Physiol 100:159–191

    Google Scholar 

  • Adrian ED (1951): Rhythmic discharges from the thalamus. J Physiol 113:9–10P

    Google Scholar 

  • Adrian ED, Yamagiwa K (1935): The origin of Berger rhythm. Brain 58: 323–351

    Article  Google Scholar 

  • Andersen P (1975): Organization of hippocampal neurons and their interconnections. In: The Hippocampus, vol 1, Isaacson RL, Pribam KH, eds. New York: Plenum Press

    Google Scholar 

  • Andersen P, Andersson SA (1968): Physiological Basis of the Alpha Rhythm. New York: Appleton-Century-Crofts

    Google Scholar 

  • Andersen P, Brooks C McC, Eccles JC (1964): Electrical responses of the ventro-basal nucleus of the thalamus. Prog Brain Res 5:100–113

    Article  Google Scholar 

  • Andersen P, Brooks CMcC, Eccles JC, Sears TA (1964): The ventro-basal nucleus of the thalamus: potential fields, synaptic transmission and excitability of both presynaptic and postsynaptic components. J Physiol 174: 348–369

    Google Scholar 

  • Barlow JS, Estrin T (1971): Comparative phase characteristics of induced and instrinsic alpha activity. Electroencephalogr Clin Neurophysiol 30: 1–9

    Article  Google Scholar 

  • Bartley SH, Bishop GH (1933): The cortical response to stimulation of the optic nerve in the rabbit. Am J Physiol 103: 159–172

    Google Scholar 

  • Başar E (1980): EEG Brain Dynamics. Relation between EEG and Brain Evoked Potentials. Amsterdam: Elsevier

    Google Scholar 

  • Başar E (1983a): Toward a physical approach to integrative physiology. I. Brain dynamics and physical causality. Am J Physiol 14: R510–533

    Google Scholar 

  • Başar E (1983b): Synergetics of Neuronal Populations. A Survey on Experiments. In: Synergetics of the Brain, Başar E, Flohr H, Haken H, Mandell AJ, eds. Berlin— Heidelberg: Springer-Verlag, pp 183–198

    Chapter  Google Scholar 

  • Başar E (1988a): EEG-Dynamics and Evoked Potentials in Sensory and Cognitive Processing by the Brain. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin-Heidelberg: Springer-Verlag, pp 30–55

    Chapter  Google Scholar 

  • Başar E (1988b): Thoughts on Brain’s Internal Codes. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin-Heidelberg: Springer-Verlag, pp 381–384

    Chapter  Google Scholar 

  • Başar E, Başar-Eroglu C, Rahn E, Schürmann M (1991): Sensory and Cognitive Components of Brain Resonance Responses: an analysis of responsiveness in human and cat brain upon visual and auditory stimulation. Acta Otolaryngol (Stockh) (in press)

    Google Scholar 

  • Başar E, Başar-Eroglu C, Röschke J, Schütt A (1989): The EEG is a quasi-deterministic signal anticipating sensory-cognitive tasks. In: Brain Dynamics, Başar E, Bullock TH, eds. Berlin-Heidelberg: Springer-Verlag, pp 43–71

    Chapter  Google Scholar 

  • Başar E, Gönder A, Özesmi C, Ungan P (1975a): Dynamics of brain rhythmic and evoked potentials. I. Some computational methods for the analysis of electrical signals from the brain. Biol Cybern 20:137–143

    Article  Google Scholar 

  • Başar E, Gönder A, Özesmi C, Ungan P (1975b): Dynamics of brain rhythmic and evoked potentials. II. Studies in the auditory pathway, reticular formation and hippocampus during the waking stage. Biol Cybern 20: 145–160

    Article  Google Scholar 

  • Başar E, Gönder A, Özesmi C, Ungan P (1975c): Dynamics of brain rhythmic and evoked potentials. III. Studies in the auditory pathway, reticular formation and hippocampus during sleep. Biol Cybern 20: 161–169

    Article  Google Scholar 

  • Başar E, Gönder A, Ungan P (1976a): Important relation between EEG and brain evoked potentials. I. Resonance phenomena in subdural structures of the cat brain. Biol Cybern 25: 27–40

    Google Scholar 

  • Başar E, Gönder A, Ungan P (1976b): Important relation between EEG and brain evoked potentials. II. A systems analysis of electrical signals from the human brain. Biol Cybern 25:41–48

    Google Scholar 

  • Başar-Eroglu C, Başar E (1991): Am Compound P300–40 Hz Response of the cat hippocampus. Int J Neurophysiol 60: 227–237

    Google Scholar 

  • Bennett TL, Herbert PN, Moss DE (1973): Hippocampal theta activity and the attention component of discrimination learning. Behav Biol 8:173–181

    Article  Google Scholar 

  • Bishop GH (1933): Cyclic changes in excitability of the optic pathway of the rabbit. Am J Physiol 103:213–224

    Google Scholar 

  • Bishop GH, Jeremy D, McLeod JG (1953): Phenomenon of repetitive firing in lateral geniculate of cat. J Neurophysiol 16: 437–447

    Google Scholar 

  • Bremer F, Bonnet V (1950): Interprétation des réactions rhythmiques prolongées des aires sensorielles de l’écorce cérébrale. EEG Clin Neurophysiol 2: 389–400

    Article  Google Scholar 

  • Bullock TH, McClune MC (1989): Lateral coherence of the electrocorticogram: a new measure of brain synchrony. Electroencephalogr and Clin Neurophysiol 73: 479– 498

    Article  Google Scholar 

  • Buzsáki G (1985): Theta rhythm: biophysical model of generation in the hippocampus. In: Electrical Activity of the Archicortex, Buzsáki G, Vanderwolf CH, eds. Budapest: Akadémiai Kiadó

    Google Scholar 

  • Chang HT (1951): Dendritic potential of cortical neurons produced by direct electrical stimulation of the cerebral cortex. J Neurophysiol 14:1–21

    Google Scholar 

  • Cooper R, Winter AL, Crow HJ, Walter WG (1965): Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroencephalogr Clin Neurophysiol 18: 217–228

    Article  Google Scholar 

  • Creutzfeldt OD, Watanabe S, Lux HD (1966): Relations between EEG-phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencephalogr Clin Neurophysiol 20: 1–18

    Article  Google Scholar 

  • Creutzfeldt OD, Rosina A, Ito M, Probst W (1969): Visual evoked response of single cells and of EEG in primary visual area of the cat. J Neurophysiol 32: 127–139

    Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988): Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol Cybern 60: 121–130

    Article  Google Scholar 

  • Eckhorn R, Bauer R, Reitboeck HJ (1989b): Discontinuities in visual cortex and possible functional implications: relating cortical structure and function with multielectrode/correlation techniques. In: Brain dynamics, Başar E, Bullock TH, eds. Berlin-Heidelberg: Springer-Verlag, pp 267–278

    Chapter  Google Scholar 

  • Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1989a): Feature linking via stimulus—evoked oscillations: experimental results from cat visual cortex and functional implications from a network model. IEEE and INNS on Neural Networks, Washington, June 18–22,1989

    Google Scholar 

  • Edelman GM (1978): Group selection and phasic re-entrant signalling: a Theory of higher brain function. In: The Mindful Brain, Edelman GM, Mountcastle VB, eds. Cambridge: MIT Press

    Google Scholar 

  • Edelman GM (1987): Neural Darwinism. The Theory of Neuronal Group Selection. New York: Basic Books

    Google Scholar 

  • Edelman GM (1989): The Remembered Present. A Biological Theory of Consciousness. New York: Basic Books

    Google Scholar 

  • Elazar Z, Adey WR (1967): Spectral analysis of low frequency components in the electrical activity of the hippocampus during learning. Electroencephalogr Clin Neurophysiol 23: 225–240

    Article  Google Scholar 

  • Elul R (1972): Randomness and synchrony in the generation of the electroencephalogram. In: Synchronization of EEG Activity in Epilepsies, Petsche H, Brazier MAB, eds. Wien–New York: Springer-Verlag

    Google Scholar 

  • Fessard A (1961): The role of neuronal networks in communication within the brain. In: Sensory Communication, Rosenblith WA, ed. Cambridge: MIT Press, pp 585– 606

    Google Scholar 

  • Freeman WJ (1975): Mass Action in the Nervous System. New York: Academic Press

    Google Scholar 

  • Freeman WJ (1979): Nonlinear gain mediating cortical stimulus-response relations. Biol Cybern 33: 237–247

    Article  Google Scholar 

  • Freeman WJ (1988). Nonlinear neural dynamics in olfaction as a model for cognition. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin Heidelberg New York: Springer-Verlag, pp 19–28

    Chapter  Google Scholar 

  • Freeman WJ (1990): Searching for signal and noise in the chaos of brain waves. In: The Ubiquity of Chaos, Knasner S, ed. American Association for the Advancement of Science, Washington

    Google Scholar 

  • Freeman WJ, Skarda CA (1985): Spatial EEG patterns, non-linear dynamics and perception: the neo-Sheerringtonian view. Brain Res Rev 10: 147–175

    Article  Google Scholar 

  • Galambos R, Makeig S (1981): Dynamic changes in steady-state responses. In: Dynamics of sensory and cognitive processing of the brain, Başar E, ed. Heidelberg: Springer-Verlag, pp 103–122

    Google Scholar 

  • Galambos R, Rose JE, Bromiley RB, Hughes JR (1952): Microelectrode studies on medial geniculate body of cat. II. Response to clicks . J Neurophysiol 15: 359–380

    Google Scholar 

  • Goldbeter A (1980): Models for oscillations and excitability in biochemical systems. Mathematical Models in Molecular and Cellular Biology, Segel LA, ed. Cambridge: Cambridge University Press

    Google Scholar 

  • Goldbeter A, Caplan SR (1976): Oscillatory enzymes. Annu Rev Biophys Bioeng 5: 449–476

    Article  Google Scholar 

  • Goldbeter A, Moran F (1988): Dynamics of a biochemical system with multiple oscillatory domains as a clue for multiple modes of neuronal oscillations. Eur Biophys J 15:277–287

    Article  Google Scholar 

  • Goldbeter A, Segal A (1980): Control of developmental transitions in the cyclic AMP signalling system of Dictyostelium discoideum. Differentiation 17: 127–135

    Article  Google Scholar 

  • Grastyán E, Lissak K, Madarasz I, Donhoffer H (1959): Hippocampal electrical activity during the development of conditioned reflexes. Electroencephalogr Clin Neurophysiol 11:409–430

    Article  Google Scholar 

  • Grastyán E, Vereczkei L (1974): Effects of spatial separation of the conditioned signal from the reinforcement: a demonstration of the conditioned character of the orienting response or the orientational character of conditioning. Behav Biol 10: 121–146

    Article  Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflect global stimulus properties. Nature 338: 334–337

    Article  Google Scholar 

  • Gray CM, Singer W (1987): Stimulus-specific neuronal oscillations in the cat visual cortex: a cortical function unit. Soc Neurosci 404: 3

    Google Scholar 

  • Gray CM, Singer W (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci 86: 1698–1702

    Article  Google Scholar 

  • Green JD, Arduini A (1954): Hippocampal electrical activity in arousal. J Neurophysiol 17:533–557

    Google Scholar 

  • Haken H (1977): Synergetics. An Introduction. Berlin: Springer

    Google Scholar 

  • Haken H (1983): Synopsis and introduction. In: Synergetics of the brain, Başar E, Flohr H, Haken H, Mandell AJ, eds. Berlin-Heidelberg: Springer-Verlag, pp 3–27

    Chapter  Google Scholar 

  • Holmes JE, Adey WR (1960): Electrical activity of the entorhinal cortex during conditioned behaviour. Am J Physiol 199: 741–744

    Google Scholar 

  • Horowitz JM, Freeman WJ, Stoll PJ (1973): A neural network with a background level of excitation in the cat hippocampus. I nt J Neurosci 5: 113–123

    Google Scholar 

  • Jahnsen H, Llinás R (1984): Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349: 229–247

    Google Scholar 

  • Jarcho LW (1949): Excitability of cortical afferent systems during barbiturate anesthesia. J Neurophysiol 12: 447–457

    Google Scholar 

  • John ER (1989): Resonating fields in the brain and the hyperneuron. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin-Heidelberg: Springer-Verlag, pp 56–87

    Google Scholar 

  • Jones EG, Powell TPS (1970): An anatomical study of converging sensory pathways within the cerebral cortex of the monkeys. Brain 93: 773–820

    Google Scholar 

  • Katchalsky AK, Rowland W, Blumenthal R (1974): Dynamics Patterns of Brain Cell Assemblies. Massachusetts: MIT Press

    Google Scholar 

  • Lansing RW, Barlow JS (1972): Rhythmic after-activity to flashes in relation to the background alpha which precedes and follows the photic stimuli. Electroencephalogr Clin Neurophysiol 32: 149–160

    Article  Google Scholar 

  • Llinás RR (1988): The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242: 1654–1664

    Article  Google Scholar 

  • Llinás RR (1990): Intrinsic electrical properties of mammalian neurons and CNS function. In: Fidia Research Foundation Neuroscience Award Lectures, vol 4. New York: Raven Press

    Google Scholar 

  • Llinás RR, Graves A (1990): Intrinsic 40-Hz oscillatory properties of layer IV neurons in guinea-pig cerebral cortex in vitro. Soc Neurosci Abstr (in press)

    Google Scholar 

  • Lopes da Silva FH (1987): Dynamics of EEGs as signals of neuronal populations: models and theoretical considerations. In: Electroencephalography: Basic Principles, Clinical Applications and Related Fields, Niedermeyer E, Lopes da Silva FH, ed. Baltimore—Munich: Urban and Schwarzenberg, pp 15–28

    Google Scholar 

  • Lopes da Silva FH, Kamphuis W, van Neerven JMAN, Pijn JPM (1990a). Cellular and Network Mechanisms in the Kindling Model of Epilepsy: The Role of GABAergic Inhibition and the Emergence of Strange Attractors. In: Machinery of the Mind, John ER, ed. Boston Basel Berlin: Birkhäuser, pp 115–139

    Google Scholar 

  • Lopes da Silva FH, Witter MP, Boeijinga PH, Lohman AHM (1990b): Anatomic organization and physiology of the limbic cortex. Physiol Rev 70:453–511

    Google Scholar 

  • Mesulam MM, Van Hoesen GW, Pandya DN, Geschwind N (1977): Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res 136: 393–414

    Article  Google Scholar 

  • Narici L, Pizella V, Romani GL, Torrioli G, Traversa R, Rossini PM (1990): Evoked α and µ-rhythm in humans: a neuromagnetic study. Brain Res 520: 222–231

    Article  Google Scholar 

  • Nogawa T, Katayama K, Tabata Y, Ohshio T, Kawahara T (1976): Changes in amplitude of the EEG induced by a photic stimulus. Electroencephalogr Clin Neurophysiol 40: 78–88

    Article  Google Scholar 

  • O’Keefe J, Nadel L (1978): The Hippocampus as a Cognitive Map. Oxford: Clarendon Press

    Google Scholar 

  • Pearson JC, Finkel LH, Edelman GM (1987): Plasticity in the organization of adult cortical maps: a computer model based on neuronal group selection. J Neurosci 7:4209–4223

    Google Scholar 

  • Petsche H, Pockeberger H, Rappelsberger P (1984): On the search for the sources of the electroencephalogram. Neuroscience 11: 1–27

    Article  Google Scholar 

  • Pfurtscheller G (1988): Mapping of event-related desynchronization and type of derivation. Electroencephalogr Clin Neurophysiol 70: 190–193

    Article  Google Scholar 

  • Prigogine I, Stengers I (1984): Order Out of Chaos. New York: Bantam

    Google Scholar 

  • Ramos A, Schwartz E, John ER (1976): Evoked potential-unit relationship in behaving cats. Brain Res Bull 1: 69–75

    Article  Google Scholar 

  • Regan D (1966): An effect of stimulus color on average steady-state potentials evoked in man. Nature 210:1056

    Article  Google Scholar 

  • Rockstroh B, Elbert T, Lutzenberger W, Birbaumer N (1984): Slow Brain Potentials and Behavior. Baltimore: Urban and Schwarzenberg

    Google Scholar 

  • Röschke J, Aldenhoff J (1991): The dimensionality of human’s electro-encephalogram during sleep. Biol Cybern 64: 307–313

    Article  Google Scholar 

  • Röschke J, Aldenhoff JB (1991): Excitability and Susceptibility of the Brain’s Electrical Activity during Sleep: an Analysis of Late Components of AEPs and VEPs. Int J Neurosci 56: 255–272

    Article  Google Scholar 

  • Röschke J, Başar E (1989): Correlation dimensions in various parts of cat and human brain. In: Brain Dynamics. Progress and Perspectives, Başar E, Bullock TH, eds. Berlin-Heidelberg: Springer-Verlag, pp 131–148

    Chapter  Google Scholar 

  • Rougeul A, Bouyer JJ, Dedet L, Debray O (1979): Fast somatoparietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. Electroencephalogr Clin Neurophysiol 46: 310–319

    Article  Google Scholar 

  • Sato K (1963): On the linear model of the brain activity in electroencephalographic potentials. Folia Psychiatr Neurol Jap 17:156–166

    Google Scholar 

  • Sato K, Kitajima H, Mimura K, Hirota N, Tagawa Y, Ochi N (1971): Cerebral visual evoked potentials in relation to EEG. Electroencephalogr Clin Neurophysiol 30: 123–128

    Article  Google Scholar 

  • Sato K, Ono K, Chiba G, Fukuta K (1977): Component activities in the autogressive activity of physiological systems. Int J Neurosci 7: 239–249

    Article  Google Scholar 

  • Sheer DE (1989): Sensory and cognitive 40-Hz event-related potentials: behavioral correlates, brain function, and clinical application. In: Brain Dynamics: Progress and Perspectives, Başar E, Bullock TH, eds. Heidelberg: Springer-Verlag, pp 339–374

    Chapter  Google Scholar 

  • Spekreijse H (1966): Analysis of EEG Responses in Man Evoked by Sinewave Modulated Light. The Hague: Thesis, University of Amsterdam, Junk

    Google Scholar 

  • Spekreijse H, Van der Tweel LH (1972): Systems analysis of linear and nonlinear processes in electrophysiology of the visual system. Proc Kon Ned Akad van Wetensch C75: 77–105

    Google Scholar 

  • Sporns O, Gally JA, Reeke GN Jr, Edelman GM (1989): Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc Natl Acad Sci 86: 7265–7269

    Article  Google Scholar 

  • Steriade M, Gloor P, Llinás RR, Lopes da Silva FH, Mesulam MM (1990a): Basic mechnisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 76: 481–508

    Article  Google Scholar 

  • Steriade M, Jones EG, Llinás RR (1990b): Thalamic oscillation and signaling. New York: John Wiley (The Neurosciences Institute publication series)

    Google Scholar 

  • Stryker MP (1989): Is grandmother an oscillation? Nature 338: 297–298

    Article  Google Scholar 

  • Swanson LW (1983): The Hippocampus and the Concept of the Limbic System. In: Neurobiology of the Hippocampus, Seifert W, ed. London New York Paris: Academic Press

    Google Scholar 

  • Van der Tweel LH, Spekreijse H (1969): Signal transport and rectification in the human evoked response system. Ann NY Acad Sci 156: 678–695

    Article  Google Scholar 

  • Van der Tweel LH, Verduyn Lunel HFE (1965): Human visual response to sinusoidally modulated light. Electroencephalogr Clin Neurophysiol 18: 587–598

    Article  Google Scholar 

  • Vertes RP (1982): Brain stem generation of the hippocampal EEG. Prog Neurobiol 19:159–186

    Article  Google Scholar 

  • Verzeano M (1973): The study of neuronal networks in the mammalian brain. In: Bioelectric Recording Techniques. Part A. Cellular Processes and Brain Potentials, Thompson RF, Patterson MM, eds. New York: Academic Press

    Google Scholar 

  • Walter WG (1964): The convergence and interaction of visual, auditory, and tactile responses in human nonspecific cortex. Ann NY Acad Sci 112: 320–361

    Article  Google Scholar 

  • Whishaw IQ, Vanderwolf CH (1973): Hippocampal EEG and behaviour: changes in amplitude and frequency of RSA (theta rhythm) associated with spontaneous and learned movement patterns in rats and cats. Behav Biol 8: 461–484

    Article  Google Scholar 

References

  • Abraham RH, Shaw CD (1983): Dynamics. The Geometry of Behaviour, vols 1–3. Santa Cruz: Aerial

    Google Scholar 

  • Babloyantz A, Nicolis C, Salazar M (1985): Evidence of chaotic dynamics of brain activity during the sleep cycle . Phys Lett (A) 11: 152–156

    Article  Google Scholar 

  • Başar E, ed. (1980): EEG—Brain Dynamics. Relation between EEG and Brain Evoked Potentials. Amsterdam: Elsevier/North-Holland

    Google Scholar 

  • Başar E, ed. (1990): Chaos in Brain Function. Berlin-Heidelberg-New York: Springer

    Google Scholar 

  • Bullock TH (1990): An agenda for research on chaotic dynamics. In: Chaos in Brain Function, Başar E, ed. Berlin-Heidelberg-New York: Springer, pp 31–41

    Chapter  Google Scholar 

  • Haken H, ed. (1983): Advanced synergetics. Berlin-Heidelberg-New York: Springer

    Google Scholar 

References to Tables 2 and 3

  • Babloyantz A, Destexhe, A (1986): Low dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci USA 83: 3513

    Article  Google Scholar 

  • Babloyantz A, Nicolis C, Salazar M (1985): Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys Lett (A) 111:152–156

    Article  Google Scholar 

  • Başar E, Başar-Eroglu C, Röschke J (1988): Do coherent patterns of the strange attractor EEG reflect deterministic sensory-cognitive states of the brain. In: From Chemical to Biological Organization, Markus M, Müller Sc, Nicolis G, eds. Berlin— Heidelberg-New York: Springer, pp 297–306

    Chapter  Google Scholar 

  • Başar E, Başar-Eroglu C, Röschke J, Schult J (1989b): Chaos- and alpha-preparation in brain function. In: Models of Brain Function, Cotteril R, ed. Cambridge University Press, pp 365–395

    Google Scholar 

  • Başar E, Başar-Eroglu C, Röschke J, Schult J (1990): Strange attractor EEG as sign of cognitive function. In: Machinery of the Mind, John ER, Harmony T, Prichep L, Valdes-Sosa A, Valdes- Sosa P, eds. Boston: Birkhäuser, pp 91–114

    Google Scholar 

  • Dvorak I, Siska J (1986): On some problems encountered in the estimation of the correlation dimension of the EEG. Phys Lett A 118: 63–66

    Article  Google Scholar 

  • Hooper J (1983): What lurks behind the wild forces of nature? Ask the connoisseurs of chaos. Omni 5: 85–92

    Google Scholar 

  • Layne SP, Mayer-Kress G, Holzfuss J (1986): Problems associated with dimensional analysis of electroencephalogram data. In: Dimensions and Entropies in Chaotic Systems, Mayer-Kress G, ed. Berlin-Heidelberg-New York: Springer, p 246

    Chapter  Google Scholar 

  • Lopes da Silva FH, Kamphuis W, van Neerven JMAM, Pijn JPM (1990): Cellular and network mechanisms in the kindling model of epilepsy: the role of GABAergic inhibition and the emerge of strange attractors. In: Machinery of the Mind, John ER, Harmony T, Prichep L, Valdes-Sosa M, Valdes-Sosa P, eds. Boston: Birkhäuser, pp 115–139

    Google Scholar 

  • Rapp PE, Albano AM, Guzman GC, Greenbaum NN, Bashore TR (1986): In: Nonlinear Oscillations in biology and chemistry, Othmer HG, ed. Berlin-Heidelberg— New York: Springer, p 175 (Lecture Notes in Biomathematics, vol 66)

    Chapter  Google Scholar 

  • Röschke J, Başar E (1985): Is EEG a simple noise or a “strange attractor”? Pflügers Arch 405: R45

    Google Scholar 

  • Röschke J, Başar E (1988): The EEG is not a simple noise: strange attractors in intracranial structures. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin-Heidelberg-New York: Springer, pp 203–216

    Chapter  Google Scholar 

  • Röschke J. Başar E (1989): Correlation dimensions in various parts of cat and human brain in different states. In: Brain Dynamics, Başar E, Bullock TH, eds. Berlin— Heidelberg-New York: Springer, pp 131–148

    Chapter  Google Scholar 

  • Saermark K, Lebech J, Bak CK, Sabers A (1989): Magnetoencephalography and attractor dimension: normal subjects and epileptic patients. In: Brain Dynamics, Başar E, Bullock TH, eds. Berlin-Heidelberg-New York: Springer, pp 149–157

    Chapter  Google Scholar 

  • Schuster HG (1988): Deterministic Chaos. Weinheim: VCH

    Google Scholar 

  • Skinner JE, Martin JL, Landisman CE, Mommer MM, Fulton K, Mitra M, Burton WD, Saltzberg B (1989): Chaotic attractors in a model of neocortex: dimensionalitites of olfactory bulb surface potentials are spatially uniform and event related. In: Brain Dynamics, Başar E, Bullock TH, eds. Berlin-Heidelberg-New York: Springer, pp 158–173

    Chapter  Google Scholar 

  • Van Erp MG (1988): On Epilepsy: Investigations on the Level of the Nerve Membrane and of the Brain. Leiden: Proefschrift Rijksuniversiteit

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Başar, E. (1992). Brain Natural Frequencies are Causal Factors for Resonances and Induced Rhythms. In: Başar, E., Bullock, T.H. (eds) Induced Rhythms in the Brain. Brain Dynamics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1281-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1281-0_24

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1283-4

  • Online ISBN: 978-1-4757-1281-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics