The Problem of Neural Integration: Induced Rhythms and Short-Term Correlations

  • Giulio Tononi
  • Olaf Sporns
  • Gerald M. Edelman
Part of the Brain Dynamics book series (BD)


Since the beginnings of neurophysiology and electroencephalography, various rhythmic patterns of brain activity have been recorded, differing in frequency, location, and relationship to behavior or cognitive activity. Recently, the cortical frequency band around 40 Hz (gamma range) has become a focus of attention (Bressler, 1990). To be sure, this band has already been studied in the past (cf. Sheer, 1970; Sheer and Grandstaff, 1970; Basşr, 1980); for instance, 40-Hz electroencephalogram (EEG) activity has been shown to be related to focused arousal (Sheer, 1976; Bouyer et al., 1981, 1987), and sensory (Galambos et al., 1981) as well as cognitive 40-Hz event-related potentials (ERPs) (Bauer and Jones, 1976; Spydell et al., 1985) have been widely examined. Rhythmic neuronal activity can show varying degrees of stimulus dependence. Ongoing background rhythms tend to be relatively independent of specific stimuli. By contrast, in stimulus-driven rhythms, temporal fluctuations of the neuronal activity are tightly locked to temporal fluctuations in the stimulus itself. What characterizes induced rhythms is that, although they are triggered by an external stimulus, their temporal structure is largely determined by interactions within the participating neuronal circuits.


Visual Cortex Oscillatory Activity Perceptual Grouping Neuronal Group Coherent Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles M (1982): Local Cortical Circuits. Berlin: Springer-VerlagCrossRefGoogle Scholar
  2. Abeles M, Vaadia E, Bergman H (1990): Firing patterns of single units in the prefrontal cortex and neural network models. Network 1: 13–25CrossRefGoogle Scholar
  3. Allport DA (1968): Phenomenal simultaneity and the perceptual moment hypothesis. Br J Psychol 59: 395–406CrossRefGoogle Scholar
  4. Alonso A, Llinás RR (1989): Subthreshold Na+ -dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342:175–177CrossRefGoogle Scholar
  5. Ashby, WR (1956): An Introduction to Cybernetics. New York: WileyGoogle Scholar
  6. Barlow HB (1981): Critical limit factors in the design of the eye and visual cortex. Proc R Soc Lond B 212:1–34CrossRefGoogle Scholar
  7. Basşr E (1980): EEG-Brain Dynamics. Amsterdam: ElsevierGoogle Scholar
  8. Bauer RH, Jones CN (1976): Feedback training of 36–44 EEG activity in visual cortex and hippocampus of cats: evidence for sensory and motor involvement. Physiol Behav 17: 885–890CrossRefGoogle Scholar
  9. Bergen JR, Julesz B (1983): Parallel versus serial processing in rapid pattern discrimination. Nature 303: 696–698CrossRefGoogle Scholar
  10. Biederman I, Mezzanotte RJ, Rabinowitz JC (1982): Scene perception: detecting and judging objects undergoing relational violations. Cogn Psychol 14: 143–177CrossRefGoogle Scholar
  11. Bindman LJ, Meyer T, Prince CA (1988): Comparison of the electrical properties of neocortical neurons in slices in vitro and in the anesthetised rat. Exp Brain Res 69: 489–496CrossRefGoogle Scholar
  12. Blumenthal, AL (1977): The process of cognition. Englewood Cliffs, N.J.: Prentice HallGoogle Scholar
  13. Boring EG (1933): The Physical Dimensions of Consciousness. New York: Dover (reprinted 1963)Google Scholar
  14. Bouyer JJ, Montaron MF, Rougeul A (1981): Fast fronto-parietal rhythms during combined focused attentive behavior and immobility in cat: cortical and thalamic localizations. Electroencephalogr Clin Neurophysiol 51: 244–252CrossRefGoogle Scholar
  15. Bouyer JJ, Montaron MF, Vahnée JM, Albert MP, Rougeul A (1987): Anatomical localization of cortical beta rhythms in cat. Neuroscience 22: 863–869CrossRefGoogle Scholar
  16. Bressler SL (1990): The gamma wave: a cortical information carrier? Trends Neurosci 13:161–162CrossRefGoogle Scholar
  17. Bullock TH, McClune MC (1989): Lateral coherence of the electrocorticogram: a new measure of brain synchrony. Electroencphalogr Clin Neurophysiol 73: 479–498CrossRefGoogle Scholar
  18. Bush PC, Douglas RJ (1991): Synchronization of bursting action potential discharge in a model network of neocortical neurons. Neur Comput 3: 19–30CrossRefGoogle Scholar
  19. Caelli T (1985): Three processing characteristics of visual texture segmentation. Spatial Vision 1: 19–30CrossRefGoogle Scholar
  20. Chagnac-Amitai Y, Connors BW (1989): Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J Neurophysiol 62:1149–1162Google Scholar
  21. Damasio AR (1989): Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition 33: 25–62CrossRefGoogle Scholar
  22. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988): Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 60: 121–130CrossRefGoogle Scholar
  23. Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1989): A neural network for feature linking via synchronous activity: results from cat visual cortex and from simulations. In: Models of Brain Function, Cotterill RMJ, ed. Cambridge, UK: Cambridge University Press, pp 255–272Google Scholar
  24. Edelman GM (1978): Group selection and phasic re-entrant signalling: a theory of higher brain function. In: The Mindful Brain, Edelman GM, Mountcastle VB, eds. Cambridge, MA: MIT Press, pp 51–100Google Scholar
  25. Edelman GM (1987): Neural Darwinism. The Theory of Neuronal Group Selection. New York: Basic BooksGoogle Scholar
  26. Edelman GM (1989): The Remembered Present. A Biological Theory of Consciousness. New York: Basic BooksGoogle Scholar
  27. Efron R (1970): The minimum duration of a perception. Neuropsychologia 8: 57–63CrossRefGoogle Scholar
  28. Engel AK, König P, Gray CM, Singer W (1990): Stimulus-dependent neuronal oscillations in cat visual cortex: II. Inter-columnar interaction as determined by crosscorrelation analysis. Eur J Neurosci 2: 588–606CrossRefGoogle Scholar
  29. Engel AK, König P, Kreiter A, Gray CM, Singer W (1991): Temporal coding by coherent oscillations as a potential solution to the binding problem: physiological evidence. In: Nonlinear Dynamics and Neuronal Networks, Schuster HG, ed. Weinheim, FRG: VCH, pp 3–25Google Scholar
  30. Finkel LH, Edelman GM (1989): The integration of distributed cortical systems by reentry: a computer simulation of interactive functionally segregated visual areas. J Neurosci 9: 3188–3208Google Scholar
  31. Freeman WJ, Skarda CA (1985): Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Res Rev 10: 147–175CrossRefGoogle Scholar
  32. Freeman WJ, van Dijk BW (1987): Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Res 422: 267–276CrossRefGoogle Scholar
  33. Galambos R, Makeig S, Talmachoff PJ (1981): A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78: 2643–2647CrossRefGoogle Scholar
  34. Gerstein G (1970): Functional associations of neurons: detection and interpretation. In: The Neurosciences. Second Study Program, Schmitt FO, ed. New York: The Rockefeller University Press, pp 648–671Google Scholar
  35. Gilbert CD, Wiesel TN (1989): Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9: 2432–2442Google Scholar
  36. Gray CM, Engel AK, König P, Singer W (1990a): Stimulus-dependent neuronal oscillations in cat visual cortex: I. Receptive field properties and feature dependence. Eur J Neurosci 2: 607–619CrossRefGoogle Scholar
  37. Gray CM, Engel AK, König P, Singer W (1991): Temporal properties of synchronous oscillatory neuronal interactions in cat striate cortex. In: Nonlinear Dynamics and Neuronal Networks, Schuster HG, ed. Weinheim, FRG: VCH, pp 27–55Google Scholar
  38. Gray CM, König P, Engel AK, Singer W (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334–337CrossRefGoogle Scholar
  39. Gray CM, König P, Engel AK, Singer W (1990b): Synchronization of oscillatory responses in visual cortex: a plausible mechanism for scene segmentation. In: Synergetics of Cognition, Haken H, ed. Berlin: Springer, pp 82–98CrossRefGoogle Scholar
  40. Gray CM, Singer W (1987): Stimulus-specific neuronal oscillations in the cat visual cortex: a cortical functional unit. Soc Neurosci Abst 13: 1449Google Scholar
  41. Gray CM, Singer W (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86: 1698–1702CrossRefGoogle Scholar
  42. Grossberg S, Mingolla E (1985): Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations. Percept Psychophy 38:141–171CrossRefGoogle Scholar
  43. Henle M (1971): The Selected Papers of Wolfgang Köhler. New York: Liveright.Google Scholar
  44. James W (1890): The Principles of Psychology. New York: Dover (reprinted 1950)CrossRefGoogle Scholar
  45. Jones EG, Powell TPS (1970): An antomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820CrossRefGoogle Scholar
  46. Kammen DM, Holmes PJ, Koch C (1989): Cortical architecture and oscillations in neuronal networks: feedback versus local coupling. In: Models of Brain Function, Cotterill RMJ, ed. Cambridge, UK: Cambridge University Press, pp 273–284Google Scholar
  47. Kienker PK, Sejnowski TJ, Hinton GE, Schumacher LE (1986): Separating figure from ground with a parallel network. Perception 15: 197–216CrossRefGoogle Scholar
  48. Koffka K (1935): Principles of Gestalt Psychology. New York: HarcourtGoogle Scholar
  49. Köhler W (1947): Gestalt Psychology. New York: LiverightGoogle Scholar
  50. Levy WB, Steward O (1983): Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8: 791–797CrossRefGoogle Scholar
  51. Libet B (1978): Neuronal vs. subjective timing for a conscious sensory experience. In: Cerebral Correlates of Conscious Experience, Buser PA, Rougeul-Buser A, eds. Amsterdam: North-Holland, pp 69–82Google Scholar
  52. Lichtenstein M (1961): Phenomenal simultaneity with irregular timing of components of the visual stimulus. Percept Motor Skills 12: 47–60CrossRefGoogle Scholar
  53. Livingstone MS, Hubel DH (1987): Psychophysical evidence for separate channels for the perception of form, color, movement and depth. J Neurosci 7: 3416–3468Google Scholar
  54. Llinás RR (1990): Intrinsic electrical properties of mammalian neurons and CNS function. In: Fidia Research Foundation Neuroscience Award Lectures, vol 4. Raven Press: New York, pp 175–194Google Scholar
  55. Luhmann HJ, Greuel JM, Singer W (1990a): Horizontal interactions in cat striate cortex: I: Anatomical substrate and postnatal development. Eur J Neurosci 2: 344–357CrossRefGoogle Scholar
  56. Lux HD, Pollen DA (1966): Electrical constants of neurons in the motor cortex of the cat. J Neurophysiol 29: 207–220Google Scholar
  57. Melssen WJ, Epping WJM (1987): Detection and estimation of neural connectivity based on crosscorrelation analysis. Biol Cybern 57:403–414CrossRefGoogle Scholar
  58. Moore GP, Segundo JP, Perkel DH, Levitan H (1970): Statistical signs of synaptic interaction in neurons. Biophys J 10: 876–900CrossRefGoogle Scholar
  59. Nakayama K, Silverman GH (1986): Serial and parallel processing of visual feature conjunctions. Nature 320: 264–265CrossRefGoogle Scholar
  60. Palm G, Aertsen AMHJ, Gerstein GL (1988): On the significance of correlations among neuronal spike trains. Biol Cybern 59: 1–11CrossRefGoogle Scholar
  61. Pearson JC, Finkel LH, Edelman GM (1987): Plasticity in the organization of adult cortical maps: a computer model based on neuronal group selection. J Neurosci 7: 4209–4223Google Scholar
  62. Perkel DH, Gerstein GL, Moore GP (1967a): Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys J 7: 391–418CrossRefGoogle Scholar
  63. Perkel DH, Gerstein GL, Moore GP (1967b): Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 7:419–440CrossRefGoogle Scholar
  64. Pöppel E (1985): Grenzen des Bewusstseins. Über Wirklichkeit und Welterfahrung. Stuttgart, FRG: Deutsche Verlags Anstalt, English edition (1988): Mindworks. Time and Conscious Experience. Orlando, FL: Academic PressGoogle Scholar
  65. Pöppel E (1970): Excitability cycles in central intermittency. Psychol Forschung, 34: 1–9CrossRefGoogle Scholar
  66. Pöppel E, Logothetis N (1986): Neuronal oscillations in the human brain. Naturwissenschaften 73: 267–268CrossRefGoogle Scholar
  67. Reeke G Jr, Finkel LH, Sporns O, Edelman GM (1990): Synthetic neural modeling: a multilevel approach to the analysis of brain complexity. In: Signal and Sense: Local and Global Order in Perceptual Maps, Edelman GM, Gall WE, Cowan WM, eds. New York: Wiley, pp 607–707Google Scholar
  68. Richet C (1898): Forme et duree de la vibration nerveuse et l’unité psychologique de temps. Revue Philosophique de la France et de l’Etranger 45: 337–350Google Scholar
  69. Schillen TB, König P (1990): Coherency detection by coupled oscillatory responses — synchronizing connections in neural oscillator layers. In: Parallel Processing in Neural Systems and Computers, Eckmiller G, Hartmann R, Hauske G, eds. Amsterdam: Elsevier, pp 139–142Google Scholar
  70. Schrödinger E (1958): Mind and Matter. Cambridge, UK: Cambridge University PressGoogle Scholar
  71. Serviere J, Miceli D, Galifret Y (1977): A psychophysical study of the visual perception of “instantaneous” and “durable.” Vision Res 17: 57–63CrossRefGoogle Scholar
  72. Sheer DE (1970): Electrophysiological correlates of memory consolidation. In: Molecular Mechanisms in Memory and Learning, Ungar G ed. New York: Plenum Press, pp 177–211Google Scholar
  73. Sheer DE (1976): Focused arousal and 40-Hz EEG. In: The Neuropsychology of Learning Disorders, Knight RM, Bakker DJ, eds. Baltimore: University Park Press, pp 71–87Google Scholar
  74. Sheer DE, Grandstaff N (1970): Computer-analysis of electrical activity in the brain and its relation to behavior. In: Current Research in Neurosciences: Topical Problems in Psychiatry and Neurology, vol 10, Wycis HT, ed. Basel: Karger, pp 160–172Google Scholar
  75. Sherrington C (1906, 1947): The Integrative Action of the Nervous System, 1 st and 2nd eds. New Haven: Yale University PressGoogle Scholar
  76. Singer W (1985): Activity-dependent self-organization of the mammalian visual cortex. In: Models of the Visual Cortex, Rose D, Dobson VG, eds. London: Wiley, pp 123–136Google Scholar
  77. Sompolinsky H, Golomb D, Kleinfeld D (1990): Global processing of visual stimuli in a network of coupled oscillators. Proc Natl Acad Sci USA 87: 7200–7204CrossRefGoogle Scholar
  78. Sporns O, Gally JA, Reeke GN Jr, Edelman GM (1989): Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc Natl Acad Sci USA 86: 7265–7269CrossRefGoogle Scholar
  79. Sporns O, Tononi G, Edelman GM (1990): Coherent oscillations in a populationbased model: their role in visual perception. Soc Neurosci Abst 16: 961Google Scholar
  80. Sporns O, Tononi G, Edelman GM (1991a): Dynamic interactions of neuronal groups and cortical integration. In: Nonlinear Dynamics and Neuronal Networks, Schuster HG, ed Weinheim, FRG: VCH, pp 205–240Google Scholar
  81. Sporns O, Tononi G, Edelman GM (1991b): Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. Proc Natl Acad Sci USA 88: 129–133CrossRefGoogle Scholar
  82. Spydell JD, Pattee G, Golde WD (1985): The 40 Hz event-related potential: normal values and effects of lesions. Elearoencephalogr Clin Neurophysiol 62: 193–202CrossRefGoogle Scholar
  83. Stroud JM (1955): The fine structure of psychological time. In: Information Theory in Psychology, Quastler H, ed. Glencoe, IL: Free PressGoogle Scholar
  84. Stryker MP (1989): Is grandmother an oscillation? Nature 338: 297–298CrossRefGoogle Scholar
  85. Symonds LL, Rosenquist AC (1984): Laminar origins of visual corticocortical connections in the cat. J Comp Neurol 229: 39–47CrossRefGoogle Scholar
  86. Treisman A (1988): Features and objects: the fourteenth Bartlett Memorial Lecture. Q J Exp Psychol 40A: 201–237Google Scholar
  87. Treisman A, Gelade G (1980): A feature-integration theory of attention. Cogn Neuropsychol 12: 97–136Google Scholar
  88. Uttal WR (1981): A Taxonomy of Visual Processes. Hillsdale, NJ: Lawrence ErlbaumGoogle Scholar
  89. Van Essen DC (1985): Functional organization of primate visual cortex. In: Cerebral Cortex, Vol. 3, Visual Cortex, Peters A, Jones EG, eds. New York: Plenum Press, pp 259–329Google Scholar
  90. Van Essen DC, Maunsell JHR (1983): Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6: 370–375CrossRefGoogle Scholar
  91. von der Malsburg C, Schneider W (1986): A neural cocktail-party processor. Biol Cybern 54: 29–40CrossRefGoogle Scholar
  92. Vaadia E, Ahissar E, Bergman H, Lavner Y (1991): Correlated activity of neurons: a neural code for higher brain functions? In: Neuronal Cooperativity Krüger J, ed. Berlin: Springer pp 249–279CrossRefGoogle Scholar
  93. Wertheimer M (1923): Untersuchungen zur Lehre von der Gestalt II. Psychol Forsch 4:301–350CrossRefGoogle Scholar
  94. Zeki S (1969): Representation of central visual fields in prestriate cortex of monkey. Brain Res 14: 271–291CrossRefGoogle Scholar
  95. Zeki S (1978): Functional specialization in the visual cortex of the rhesus monkey. Nature 274: 423–428CrossRefGoogle Scholar
  96. Zeki S, Shipp S (1988): The functional logic of cortical connections. Nature 335:311–317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Giulio Tononi
  • Olaf Sporns
  • Gerald M. Edelman

There are no affiliations available

Personalised recommendations