Skip to main content

Oscillations in CNS Neurons: A Possible Role for Cortical Interneurons in the Generation of 40-Hz Oscillations

  • Chapter
Induced Rhythms in the Brain

Part of the book series: Brain Dynamics ((BD))

Abstract

Despite unprecedented success, modern neuroscience continues to face many cardinal issues in relation to the overall nature of brain function. Among such quandaries, that of the essentially intrinsic or extrinsic organization of nervous system activity must be considered fundamental. A general approach to this problem was proposed by Immanuel Kant (1781) in relation to cognition, which he deemed to be an innate or “a prioristic” property. The opposite approach was taken by William James (1890), who viewed cognition as extrinsic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso A, deCurtis M, and Llinás, R (1990): Postsynaptic Hebbian and Non-Hebbian Long-term Potentiation of Synaptic Efficacy in the Entorhinal Cortex in slices and in the Isolated adult Guinea-Pig brain. PNAS 87 : 9280–9284.

    Article  Google Scholar 

  • Alonso A, Llinás, R (1989): Subthreshold Na-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature (Lond) 342 : 175–177

    Article  Google Scholar 

  • Benardo LS, Foster RE (1986): Oscillatory behavior in inferior olive neurons: mechanism, modulation, cell aggregates. Brain Res Bull 17 : 773–784

    Article  Google Scholar 

  • Bland BH (1986): The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol 26 : 1–54

    Article  Google Scholar 

  • Bliss TV, and Lomo T (1973): Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331–356

    Google Scholar 

  • Bouyer JJ, Montaron F, Vahneed JM, Albert MP, Rougeul A (1987): Anatomical localization of cortical beta rhythms in cat. Neuroscience 22: 863–869

    Article  Google Scholar 

  • Brown GT (1911): The intrinsic factors in the act of progression in the mammal. Proc R Soc B 84: 308–319

    Article  Google Scholar 

  • Colonnier M (1967): The fine structural arrangement of the cortex. Arch Neurol 16 : 651–657

    Article  Google Scholar 

  • Connor JA, Stevens CF (1971): Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol 213 : 21–30

    Google Scholar 

  • Ferster D (1988): Spatially opponent excitation and inhibition in simple cells of the cat visual cortex. J Neurosci 8 : 1172–1180

    Google Scholar 

  • Gray CM, Engel AK, Konig P, Singer W (1990): Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature dependence. Eur J Neurosci 2: 607–619

    Article  Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338 : 334–337

    Article  Google Scholar 

  • Gray CM, Singer W (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci 86 : 1698–1702

    Article  Google Scholar 

  • Grillner S (1985): Motor acts in vertebrates. Science 228 : 143–149

    Article  Google Scholar 

  • Hagiwara S, Kusano K, Saito N (1961): Membrane changes of Onchidium nerve cell in potassium-rich media. J Physiol 155:470–489

    Google Scholar 

  • Jahnsen H, Llinás, R (1984a): Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol (Lond) 349 : 205–226

    Google Scholar 

  • Jahnsen H, Llinás R (1984b): Ionic basis for the electro responsiveness and oscillatory properties of guinea-pig thalamic neurons in-vitro. J Physiol (Lond) 349 : 227–248

    Google Scholar 

  • James W(1890): Principles of Psychology. New York: Repro. Dover, 1950 ed

    Book  Google Scholar 

  • Jones KA, Baughman RW (1988): NMDA- and non-NMDA-receptor components of excitatory synaptic potentials recorded from cells in layer V of rat visual cortex. J Neurosci 8: 3522–3534

    Google Scholar 

  • Kant E (1781): Critique of Pure Reason. Garden City: Doubleday & Company, Inc., 1966 ed

    Google Scholar 

  • Larson J, Wong D, Lynch G (1986): Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science 232 : 985–988

    Article  Google Scholar 

  • Llinás R (1988): The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242 : 1654–1664

    Article  Google Scholar 

  • Llinás R (1990): Intrinsic electrical properties of mammalian neurons and CNS function. In: Fidia Research Foundation Neuroscience Award Lectures. New York: Raven Press

    Google Scholar 

  • Llinás R, Geijo-Barrientos E (1989): In vitro studies of mammalian thalamic and reticularic thalamic neurons. In: Cellular Thalamic Mechanisms, Bentivoglio M, Spreafico R, eds. Amsterdam: Elsevier

    Google Scholar 

  • Llinás R, Grace AA (1989): Intrinsic 40 Hz oscillatory properties of layer IV neurons in guinea pig cerebral cortex in vitro. Soc Neurosci Abst 15 : 660

    Google Scholar 

  • Llinás R, Pare D. Of Dreaming and Wakefulness. Neuroscience 44:3 521–535, 1991.

    Article  Google Scholar 

  • Llinás RR, Grace AA, Yarom Y (1991): In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. PNAS 88 : 897–901

    Article  Google Scholar 

  • Llinás R, Sasaki K (1989): The functional organization of the olivo-cerebellar system as examined by multiple Purkinje cell recordings. European J Neuroscience 1: 587— 602

    Article  Google Scholar 

  • Llinás R, Sugimori M (1980): Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol (Lond) 305:171–195

    Google Scholar 

  • Llinás R, Yarom Y (1981 a): Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol (Lond) 315 : 549–567

    Google Scholar 

  • Llinás R, Yarom Y (1981 b): Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol (Lond) 315 : 569–584

    Google Scholar 

  • Llinás R, Yarom Y (1986): Oscillatory properties of guinea-pig inferior olivary neurons and their pharmacological modulation: an in vitro study. J Physiol (Lond) 376:163–182

    Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985): Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316 : 440–443

    Article  Google Scholar 

  • Ramon y Cajal S (1904): Histologie du Systeme Nerveux de l’Homme et des Vertebrés. Madrid: Instituto Ramon y Cajal

    Google Scholar 

  • Sherrington C (1906): The Integrative Action of the Nervous System. New Haven: Yale University Press

    Google Scholar 

  • Steriade M, Domich L, Oakson G (1986): Reticularis thalamic neurons revisited: activity changes during shifts in states of vigilance. J Neurosci 6: 68–81

    Google Scholar 

  • Steriade M, Gloor P, Llinás RR, Lopes da Silva F, Mesulam MM (1990a): Basic Mechanisms of Cerebral Rhythmic Activities. Electroencephalogr Clin Neurophysiol 76:481–508

    Article  Google Scholar 

  • Steriade M, Jones EG, Llinás RR (1990b): Thalamic Oscillations and Signalling. New York: John Wiley & Sons

    Google Scholar 

  • Walton KD, Yarom Y, Llinás R (1990): Intrinsic subthreshold 10–50 Hz membrane oscillations in interneurons in the fourth layer of the frontal cortex. Neurosci Soc Abst 16 : 1134

    Google Scholar 

  • Yarom Y, Llinás R (1990): Intracellular autostimulation of in vitro guinea-pig thalamic neurons (TH) utilizing a hardware bio-electric re-entry system. Soc Neurosci Abst 16:955

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Llinás, R.R. (1992). Oscillations in CNS Neurons: A Possible Role for Cortical Interneurons in the Generation of 40-Hz Oscillations. In: Başar, E., Bullock, T.H. (eds) Induced Rhythms in the Brain. Brain Dynamics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1281-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1281-0_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1283-4

  • Online ISBN: 978-1-4757-1281-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics