Oscillations in CNS Neurons: A Possible Role for Cortical Interneurons in the Generation of 40-Hz Oscillations

  • Rodolfo R. Llinás
Part of the Brain Dynamics book series (BD)

Abstract

Despite unprecedented success, modern neuroscience continues to face many cardinal issues in relation to the overall nature of brain function. Among such quandaries, that of the essentially intrinsic or extrinsic organization of nervous system activity must be considered fundamental. A general approach to this problem was proposed by Immanuel Kant (1781) in relation to cognition, which he deemed to be an innate or “a prioristic” property. The opposite approach was taken by William James (1890), who viewed cognition as extrinsic in nature.

Keywords

Entorhinal Cortex Thalamic Neuron Central Nervous System Neuron Oscillatory Property Cortical Interneuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso A, deCurtis M, and Llinás, R (1990): Postsynaptic Hebbian and Non-Hebbian Long-term Potentiation of Synaptic Efficacy in the Entorhinal Cortex in slices and in the Isolated adult Guinea-Pig brain. PNAS 87 : 9280–9284.CrossRefGoogle Scholar
  2. Alonso A, Llinás, R (1989): Subthreshold Na-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature (Lond) 342 : 175–177CrossRefGoogle Scholar
  3. Benardo LS, Foster RE (1986): Oscillatory behavior in inferior olive neurons: mechanism, modulation, cell aggregates. Brain Res Bull 17 : 773–784CrossRefGoogle Scholar
  4. Bland BH (1986): The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol 26 : 1–54CrossRefGoogle Scholar
  5. Bliss TV, and Lomo T (1973): Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331–356Google Scholar
  6. Bouyer JJ, Montaron F, Vahneed JM, Albert MP, Rougeul A (1987): Anatomical localization of cortical beta rhythms in cat. Neuroscience 22: 863–869CrossRefGoogle Scholar
  7. Brown GT (1911): The intrinsic factors in the act of progression in the mammal. Proc R Soc B 84: 308–319CrossRefGoogle Scholar
  8. Colonnier M (1967): The fine structural arrangement of the cortex. Arch Neurol 16 : 651–657CrossRefGoogle Scholar
  9. Connor JA, Stevens CF (1971): Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol 213 : 21–30Google Scholar
  10. Ferster D (1988): Spatially opponent excitation and inhibition in simple cells of the cat visual cortex. J Neurosci 8 : 1172–1180Google Scholar
  11. Gray CM, Engel AK, Konig P, Singer W (1990): Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature dependence. Eur J Neurosci 2: 607–619CrossRefGoogle Scholar
  12. Gray CM, Konig P, Engel AK, Singer W (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338 : 334–337CrossRefGoogle Scholar
  13. Gray CM, Singer W (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci 86 : 1698–1702CrossRefGoogle Scholar
  14. Grillner S (1985): Motor acts in vertebrates. Science 228 : 143–149CrossRefGoogle Scholar
  15. Hagiwara S, Kusano K, Saito N (1961): Membrane changes of Onchidium nerve cell in potassium-rich media. J Physiol 155:470–489Google Scholar
  16. Jahnsen H, Llinás, R (1984a): Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol (Lond) 349 : 205–226Google Scholar
  17. Jahnsen H, Llinás R (1984b): Ionic basis for the electro responsiveness and oscillatory properties of guinea-pig thalamic neurons in-vitro. J Physiol (Lond) 349 : 227–248Google Scholar
  18. James W(1890): Principles of Psychology. New York: Repro. Dover, 1950 edCrossRefGoogle Scholar
  19. Jones KA, Baughman RW (1988): NMDA- and non-NMDA-receptor components of excitatory synaptic potentials recorded from cells in layer V of rat visual cortex. J Neurosci 8: 3522–3534Google Scholar
  20. Kant E (1781): Critique of Pure Reason. Garden City: Doubleday & Company, Inc., 1966 edGoogle Scholar
  21. Larson J, Wong D, Lynch G (1986): Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science 232 : 985–988CrossRefGoogle Scholar
  22. Llinás R (1988): The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242 : 1654–1664CrossRefGoogle Scholar
  23. Llinás R (1990): Intrinsic electrical properties of mammalian neurons and CNS function. In: Fidia Research Foundation Neuroscience Award Lectures. New York: Raven PressGoogle Scholar
  24. Llinás R, Geijo-Barrientos E (1989): In vitro studies of mammalian thalamic and reticularic thalamic neurons. In: Cellular Thalamic Mechanisms, Bentivoglio M, Spreafico R, eds. Amsterdam: ElsevierGoogle Scholar
  25. Llinás R, Grace AA (1989): Intrinsic 40 Hz oscillatory properties of layer IV neurons in guinea pig cerebral cortex in vitro. Soc Neurosci Abst 15 : 660Google Scholar
  26. Llinás R, Pare D. Of Dreaming and Wakefulness. Neuroscience 44:3 521–535, 1991.CrossRefGoogle Scholar
  27. Llinás RR, Grace AA, Yarom Y (1991): In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. PNAS 88 : 897–901CrossRefGoogle Scholar
  28. Llinás R, Sasaki K (1989): The functional organization of the olivo-cerebellar system as examined by multiple Purkinje cell recordings. European J Neuroscience 1: 587— 602CrossRefGoogle Scholar
  29. Llinás R, Sugimori M (1980): Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol (Lond) 305:171–195Google Scholar
  30. Llinás R, Yarom Y (1981 a): Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol (Lond) 315 : 549–567Google Scholar
  31. Llinás R, Yarom Y (1981 b): Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol (Lond) 315 : 569–584Google Scholar
  32. Llinás R, Yarom Y (1986): Oscillatory properties of guinea-pig inferior olivary neurons and their pharmacological modulation: an in vitro study. J Physiol (Lond) 376:163–182Google Scholar
  33. Nowycky MC, Fox AP, Tsien RW (1985): Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316 : 440–443CrossRefGoogle Scholar
  34. Ramon y Cajal S (1904): Histologie du Systeme Nerveux de l’Homme et des Vertebrés. Madrid: Instituto Ramon y CajalGoogle Scholar
  35. Sherrington C (1906): The Integrative Action of the Nervous System. New Haven: Yale University PressGoogle Scholar
  36. Steriade M, Domich L, Oakson G (1986): Reticularis thalamic neurons revisited: activity changes during shifts in states of vigilance. J Neurosci 6: 68–81Google Scholar
  37. Steriade M, Gloor P, Llinás RR, Lopes da Silva F, Mesulam MM (1990a): Basic Mechanisms of Cerebral Rhythmic Activities. Electroencephalogr Clin Neurophysiol 76:481–508CrossRefGoogle Scholar
  38. Steriade M, Jones EG, Llinás RR (1990b): Thalamic Oscillations and Signalling. New York: John Wiley & SonsGoogle Scholar
  39. Walton KD, Yarom Y, Llinás R (1990): Intrinsic subthreshold 10–50 Hz membrane oscillations in interneurons in the fourth layer of the frontal cortex. Neurosci Soc Abst 16 : 1134Google Scholar
  40. Yarom Y, Llinás R (1990): Intracellular autostimulation of in vitro guinea-pig thalamic neurons (TH) utilizing a hardware bio-electric re-entry system. Soc Neurosci Abst 16:955Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Rodolfo R. Llinás

There are no affiliations available

Personalised recommendations