Mesopontine Cholinergic Systems Suppress Slow Rhythms and Induce Fast Oscillations in Thalamocortical Circuits

  • Mircea Steriade
  • Roberto Curró Dossi
  • Denis Paré
Part of the Brain Dynamics book series (BD)


The terms synchronization and desynchronization have been coined for highamplitude and slow (< 15 Hz) oscillations occurring synchronously in widespread brain territories during light sleep, as opposed to low-amplitude and fast (> 20 Hz) waves during arousal and sleep with dreaming episodes. This dichotomy, used because of its heuristic value, simplifies a more complex reality. Indeed, sequences of fast oscillations may occur with much higher amplitudes than those of background activity during states of increased vigilance. This phenomenon was first observed by Bremer et al. (1960), who emphasized that a flattening of the cortical electroencephalogram (EEG) on brain stem reticular stimulation (Moruzzi and Magoun, 1949) is not the only effect of this now classical experimental way of mimicking awakening. Instead, a clear-cut enhancement in amplitude of spontaneous rhythms and their acceleration up to 40 to 45 Hz was seen on cortical EEG, simultaneously with the ocular syndrome of arousal, regardless of the frequency of stimulation applied to the brainstem core (see Fig. 5C—D in Bremer et al., 1960).


Basal Forebrain Fast Oscillation Thalamic Neuron Reticular Thalamic Nucleus Delta Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asanuma C (1989): Axonal arborizations of a magnocellular basal nucleus input, and their relations to the neurons in the reticular thalamic nucleus of rats. Proc Natl Acad Sci USA 86 : 4746–4750CrossRefGoogle Scholar
  2. Asanuma C, Porter LL (1990): Light and electron microscopic evidence for a GABAergic projection from the caudal basal forebrain to the thalamic reticular nucleus in rats. J Comp Neurol 302 : 159–172CrossRefGoogle Scholar
  3. Bouyer JJ, Montaron MF, Vahnée JM, Albert MP, Rougeul A (1987): Anatomical localization of cortical beta rhythms in cat. Neuroscience 22 : 863–869CrossRefGoogle Scholar
  4. Bremer F, Stoupel N, Van Reeth PC (1960): Nouvelles recherches sur la facilitation et l’inhibition des potentiels évoqués corticaux dans l’éveil réticulaire. Arch Ital Biol 98 : 229–247Google Scholar
  5. Buzsáki G, Bickford RG, Armstrong RM, Ponomareff G, Chen KS, Ruiz R, Thal LJ, Gage FH (1988a): Electrical activity in the neocortex of freely moving young and aged rats. Neuroscience 26 : 735–744CrossRefGoogle Scholar
  6. Buzsáki G, Bickford RG, Ponomareff G, Thal, LJ, Mandel R, Gage FH (1988b): Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8 : 4007–4026Google Scholar
  7. Connors B, Gutnick MJ, Prince DA (1982): Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48 : 1302–1320Google Scholar
  8. Curró Dossi R, Nuñez A, Steriade M (1992) Electrophysiology of a slow (0.5–4 Hz) oscillation of cat thalamocortical neurons in vivo. J Physiol (Lond) 447: 215–234Google Scholar
  9. Curró Dossi R, Paré D, Steriade M (1991): Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. J Neurophysiol 65 : 393–406Google Scholar
  10. Freeman WJ (1975): Mass Action in the Nervous System. New York: Academic PressGoogle Scholar
  11. Gray CM, Engel KA, Konig P, Singer W (1990) : Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature dependence. Eur J Neurosci 2: 607–619CrossRefGoogle Scholar
  12. Gray CM, Singer W (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86 : 1698–1702CrossRefGoogle Scholar
  13. Hu B, Steriade M, Deschênes M (1989): The effects of brainstem peribrachial stimulation on reticular thalamic neurons. Neuroscience 31 : 1–12CrossRefGoogle Scholar
  14. Jasper HH, Tessier J (1971): Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science 172 : 601–602CrossRefGoogle Scholar
  15. Jones EG (1985): The Thalamus. New York: Plenum PressGoogle Scholar
  16. Lindström S, Wrobel A (1990): Frequency dependent corticofugal excitation of principal cells in the cat’s dorsal lateral geniculate nucleus. Exp Brain Res 79 : 313–318CrossRefGoogle Scholar
  17. Llinás RR (1990): Intrinsic electrical properties of mammalian neurons and CNS function. In: Fidia Research Foundation Neurosciences Award Lectures. New York: Raven Press, pp 173–192Google Scholar
  18. Llinás, R, Grace, A, Yarom Y (1991): In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10 to 50 Hz frequency. Proc Natl Acad Sci USA 88 : 897–901CrossRefGoogle Scholar
  19. McCormick DA, Pape HC (1988): Acetylcholine inhibits identified interneurones in the cat lateral geniculate nucleus. Nature 334 : 246–248CrossRefGoogle Scholar
  20. McCormick DA, Pape HC (1990): Properties of a hyperpolarization activated cation current, Ih, and its role in rhythmic oscillations in thalamic relay neurons. J Physiol (Lond) 431:291–318Google Scholar
  21. McCormick DA, Prince DA (1986): Mechanisms of action of acetylcholine in the guinea pig cerebral cortex, in vitro. J Physiol (Lond) 375 : 169–194Google Scholar
  22. Moruzzi G, Magoun HW (1949): Brain stem reticular stimulation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473Google Scholar
  23. Mulle C, Steriade M, Deschênes M (1985): Absence of spindle oscillations in the cat anterior thalamic nuclei. Brain Res 334 : 169–171CrossRefGoogle Scholar
  24. Paré D, Smith Y, Parent A, Steriade M (1988): Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25 : 69–86CrossRefGoogle Scholar
  25. Paré D, Steriade M, Deschênes M, Oakson G (1987): Physiological properties of anterior thalamic nuclei, a group devoid of inputs from the reticular thalamic nucleus. J Neurophysiol 57 : 1669–1685Google Scholar
  26. Parent A, Paré D, Smith Y, Steriade M (1988): Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys. J Comp Neurol 277 : 281–301CrossRefGoogle Scholar
  27. Rougeul-Buser A, Bouyer JJ, Montaron MF, Buser P (1983): Patterns of activities in the ventrobasal thalamus and somatic cortex S1 during behavioral immobility in the awake cat: focal waking rhythms. Exp Brain Res 7 (Suppl) : 69–87CrossRefGoogle Scholar
  28. Schwindt PC, Spain WJ, Foehring RC, Chubb MC, Crill WE (1988a): Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. J Neurophysiol 59 : 450–467Google Scholar
  29. Schwindt PC, Spain WJ, Foehring RC, Stafstrom CE, Chubb MC, Crill WE (1988b): Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. J Neurophysiol 59 : 424–449Google Scholar
  30. Sheer D (1984): Focused arousal, 40 Hz EEG, and dysfunction. In: Selfregulation of the Brain and Behavior, Ebert T, ed. Berlin: Springer-Verlag, pp 64–84CrossRefGoogle Scholar
  31. Singer W (1990): Role of acetylcholine in use-dependent plasticity of the visual cortex. In: Brain Cholinergic Systems, Steriade M, Biesold D, eds. Oxford: Oxford University Press, pp 314–336Google Scholar
  32. Steriade M (1968): The flash-evoked afterdischarge. Brain Res 9 : 169–212CrossRefGoogle Scholar
  33. Steriade M (1984): The excitatory-inhibitory response sequence in thalamic and neocortical cells: state-related changes and regulatory system. In: Dynamic Aspects of Neocortical Function, Edelman GM, Gall WE, Cowan WM, eds. New York: WileyInterscience, pp 105–157Google Scholar
  34. Steriade M, Apostol V, Oakson G (1971): Control of unitary activities in cerebellothalamic pathways during wakefulness and synchronized sleep. J Neurophysiol 34: 384–413Google Scholar
  35. Steriade M, Belekhova M, Apostol V (1968): Reticular potentiation of cortical flashevoked afterdischarge. Brain Res 11 : 276–280CrossRefGoogle Scholar
  36. Steriade M, Buzsaki G (1990): Parallel activation of thalamic and cortical neurons by brainstem and basal forebrain cholinergic systems. In: Brain Cholinergic Systems, Steriade M, Biesold D, eds. Oxford: Oxford University Press, pp 3–62Google Scholar
  37. Steriade M, Curró Dossi R, Nuñez A (1991 a): Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J. Neurosci 11:3200–3217Google Scholar
  38. Steriade M, Curro Dossi R, Paré D, Oakson G (1991 b): Potentiation of 40 Hz activities in thalamocortical systems by stimulating mesopontine cholinergic nuclei. Proc Natl Acad Sci USA 88 : 4396–4400CrossRefGoogle Scholar
  39. Steriade M, Datta S, Paré D, Oakson G, Curro Dossi R (1990a): Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10 : 2527–2545Google Scholar
  40. Steriade M, Deschênes M (1988): Intrathalamic and brainstem-thalamic networks involved in resting and alert states. In: Cellular Thalamic Mechanisms, Bentivoglio M, Spreafico R, eds. Amsterdam: Elsevier, pp 37–62Google Scholar
  41. Steriade M, Deschênes M, Domich L, Mulle C (1985): Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54 : 1473–1497Google Scholar
  42. Steriade M, Domich L, Oakson G, Deschênes M (1987a): The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol 57 : 260–273Google Scholar
  43. Steriade M, Gloor P, Llinás RR, Lopes da Silva FH, Mesulam MM (1990b): Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 76 : 481—508CrossRefGoogle Scholar
  44. Steriade M, Jones EG, Llinás RR (1990c): Thalamic Oscillations and Signaling. New York: Wiley-InterscienceGoogle Scholar
  45. Steriade M, Llinás RR (1988): The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68 : 649–742Google Scholar
  46. Steriade M, Parent A, Hada J (1984): Thalamic projections of nucleus reticularis thalami of cat: a study using retrograde transport of horseradish peroxidase and double fluorescent tracers. J Comp Neurol 229 : 531–547CrossRefGoogle Scholar
  47. Steriade M, Parent A, Paré D, Smith Y (1987b): Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei. Brain Res 408 : 372–376CrossRefGoogle Scholar
  48. Velayos JL, Jiménez-Castellanos J, Reinoso-Suarez F (1989): Topographical organization of the projections from the reticular thalamic nucleus to the intralaminar and medial thalamic nuclei in the cat. J Comp Neurol 279 : 457–469CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Mircea Steriade
  • Roberto Curró Dossi
  • Denis Paré

There are no affiliations available

Personalised recommendations