Innate Cellular Defense by Mosquito Hemocytes

  • David A. Foley
Part of the Comparative Pathobiology book series (CPATH, volume 4)


The mosquito is an ideal laboratory model for the study of innate cellular defense mechanisms among the Metozoa. Although there may be nonspecific protective humoral factors present in the hemolymph of mosquitoes, there is presumably no specific humoral or antibody system as part of their arsenal of internal defense. In addition, both man and mosquitoes are susceptible to infection by parasites of the genus Plasmodium. In both mammals and mosquitoes, the malaria sporozoite must migrate through the circulation to reach a target organ (liver or salivary gland), and is therefore potentially susceptible to the cellular defense mechanisms of both hosts. This fortunate circumstance affords an opportunity to study the response of a purely cellular internal defense mechanism to the same stage of the same parasite which successfully evades the defense mechanisms of both mammals and mosquitoes.


Salivary Gland Blood Meal None None Adult Mosquito Plasmodium Berghei 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amouriq, L. (1960). Formules hemocytaires de la larve, de la nymphe et de l’adulte de Culex hortensis (Dipt. Culicidae). Bull. Soc. Entom. France, 65, 135–139.Google Scholar
  2. Andreadis, T. G. and Hall, D. W. (1976). Neoaplectana carpocapsae: Encapsulation in Aedes aegypti and changes in host hemocytes and hemolymph proteins. Exp. Parasitol., 39, 252–261.PubMedCrossRefGoogle Scholar
  3. Arnold, J. W. (1974). The hemocytes of insects. In: “The Physiology of Insecta,” (M. Rockstein, ed.), second edition, volume 5, pp. 201–254. Academic Press, New York.CrossRefGoogle Scholar
  4. Bhat, U. K. M. and Singh, K. R. P. (1975). The haemocytes of the mosquito Aedes albopictus and their comparison with larval cells cultured in vitro. Experientia, 31, 1331–1332.CrossRefGoogle Scholar
  5. Bronskill, J. F. (1962). Encapsulation of rhabditoid nematodes in mosquitoes. Can. J. Zool., 40, 1269–1275.CrossRefGoogle Scholar
  6. Chao, J. and Ball, G. H. (1956). Quantitative microinjection of mosqu itoes. Science, 123, 228–229.PubMedCrossRefGoogle Scholar
  7. Foley, D. A. and Cheng, T. C. (1977). Degranulation and other changes of molluscan granulocytes associated with phagocyt o s is. J. Invertebr. Patho l., 29, 321–325.CrossRefGoogle Scholar
  8. Huff, C. G. (1934). Comparative studies on susceptible and insu sc ept ible Culex pipiens in relation to inf ections with Plasmodium cathemerium and P. relictum. Am. J. Hyg., 19, 123–147.Google Scholar
  9. Jones, J. C. (1954). The heart and associated tissues of Anopheles quadrimaculatus Say (Diptera:Culicidae). J. Morph., 94, 71–125.CrossRefGoogle Scholar
  10. Jones, J. C. (1962). Current concepts concerning insect hemocytes. Am. Zool., 2, 209–246.Google Scholar
  11. Jones, J. C. (1970). Hemocytopoiesis in insects. In: “Regulat ion of Hematopoies is,” (A. S. Gordon, ed.), volume I, pp. 7–65. Appleton-Century-Crofts, New York.Google Scholar
  12. Mack, S., Foley, D. A., and Vanderberg, J. P. (1978). Hemolymph volume of Anopheles stephensi. (manuscript in preparat ion).Google Scholar
  13. Mack, S., Vanderberg, J. P., and Nawrot, R. (1978). Column separation of Plasmodium berghei sporozoites. J. Parasitol. (in press).Google Scholar
  14. Oelerich, S. (1967). Vergleichende Untersuchungen uber das Auftreten von Malaria-Sporozoiten in den Speicheldrusen und in den ubrigen Organen der Mucke. Z. Tropenmed. Parasit., 18, 285–303.Google Scholar
  15. Pringle, G. (1965). A count of the sporozoites in an oocyst of Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg., 59, 289–290.PubMedCrossRefGoogle Scholar
  16. Shute, P. G. and Maryon, M. E. (1966). “Laboratory Technique for the Study of Malaria,” second edition, 112 pp. J. and A. Churchill, Ltd., London.Google Scholar
  17. Strome, C. P. A. and Beaudoin, R. L. (1974). The surface of the malaria parasite 1. Scanning electron microscopy of the oocyst. Expt. Parasztol., 36, 131–142.CrossRefGoogle Scholar
  18. Vanderberg, J. P. (1977). Plasmodium berghei: Quantitation of sporozoites injected by mosquitoes feeding on a rodent host. Expt. Parasitol., 42, 169–181.CrossRefGoogle Scholar
  19. Weathersby, A. B. and McCall, J. W. (1968). The development of Plasmodium gallinaceum Brumpt in the hemocoels of refractory Culex pipiens pipiens Linn. and susceptible Aedes aegypti (Linn.). J. Parasitol., 54, 1017–1022.PubMedCrossRefGoogle Scholar
  20. Weiss, M. M. and Vanderberg, J. P. (1976). Studies on Plasmodium ookinetes. 1. Isolation and concentration from mosquito midguts. J. Protozool., 23, 547–551.PubMedGoogle Scholar
  21. Whitcomb, R. F., Shapiro, M., and Granados, R. R. (1974). Insect defense mechanisms against microorganisms and parasitoids. In: “The Physiology of Insecta,” (M. Rockstein, ed.), second edition, volume 5, pp. 447–536. Academic Press, New York.CrossRefGoogle Scholar
  22. Yoeli, M. (1973). Plasmodium berghei: Mechanisms and sites of resistance to sporogonic development in dif f erent mosquitoes. Expt. Parasitol., 34, 448–458.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • David A. Foley
    • 1
  1. 1.Division of Parasitology Department of MicrobiologyNew York University Medical SchoolYork CityUSA

Personalised recommendations