Crystal Growth pp 193-232 | Cite as

Travelling Solvent Techniques

  • G. A. Wolff
  • A. I. Mlavsky

Abstract

Travelling solvent techniques offer a powerful and versatile approach to the growth of crystals, particularly for materials which cannot readily be melted on account of phase transformations or decomposition. There are two main variants, based on (1) the use of a stationary temperature gradient across a thin solvent zone, and (2) the enforced migration of a thick solvent zone by means of an externally moved heating element. While the first, the travelling solvent method (TSM), is especially suitable for the growth of thin perfect crystals and single-crystal rectifying junctions, the travelling heater method (THM) is advantageous for the growth of large single crystals in that it reduces the detrimental effect of constitutional supercooling. In particular the second method is most useful for the growth of peritectic compounds and of solid solutions of uniform composition. The removal of both dislocations and impurities by a travelling solvent zone has been demonstrated in several cases which are discussed in detail. Analyses of both material and heat-transport and also of crystal growth are outlined for the various methods.

Keywords

Crystal Growth Solvent Technique Constitutional Supercooling Liquid Zone Vapour Phase Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. WOLFF, P. H. KECK and J. D. BRODER, Phys. Rev., 94,, 753 (1954).Google Scholar
  2. 2.
    A. W. EWALD and O. N. TUFTE, J.Apnl. Phys., 29, 1007 (1958)ADSCrossRefGoogle Scholar
  3. 3.
    A. I. MLAVSKY and M. WEINSTEIN, J. A ppl. Phys., 34, 2885 (1963).ADSGoogle Scholar
  4. 4.
    M. WEINSTEIN and A. I. MLAVSKY, J. Appl. Phys., 35, 1892 (1964).ADSCrossRefGoogle Scholar
  5. 5.
    G. A. WOLFF, H. E. LaBELLE, Jr. and B. N. DAS, TMS-AIME, 242, 436 (1968).Google Scholar
  6. 6.
    L. B. GRIFFITHS and A. I. MLAVSKY, J. Electrochem. Soc., 111, 805 (1964).CrossRefGoogle Scholar
  7. 7.
    B. diBENEDETTO and A. I. MLAVSKY, unpublished.Google Scholar
  8. 8.
    J. D. BRODER and G. A. WOLFF, J. Electrochem. Soc., 110, 1150 (1963).CrossRefGoogle Scholar
  9. 9.
    G. A. WOLFF and H. E. LaBELLE, Jr., J. Am. Ceram. Soc., 48, 441 (1965).CrossRefGoogle Scholar
  10. 10.
    D. NAVON, J. Appl. Phys., 29 579 (1958)ADSCrossRefGoogle Scholar
  11. 11.
    D. NAVON and P. DeBEURS, Trans. IRE. PGED, ED-6, 169 (1959).Google Scholar
  12. 12.
    K. M. HERGENROTHER, U.S. Patent No. 2,996,456 (1961).Google Scholar
  13. 13.
    M. WEINSTEIN, and A. I. MLAVSKY, Appl. Phys. Letters, 2, 97 (1963).ADSCrossRefGoogle Scholar
  14. 14.
    L. B. GRIFFITHS, J. Appl. Phys., 36, 571 (1965).ADSCrossRefGoogle Scholar
  15. 15.
    W. G. PFANN, J. Metals, 7, 961 (1955).Google Scholar
  16. 16.
    C. C. HEIN, U.S. Patent No. 2,747,971 (1956).Google Scholar
  17. 17.
    D. R. MASON and J. S. COOK, J. Appl. Phys., 32, 475 (1961).ADSCrossRefGoogle Scholar
  18. 18.
    L. L. ABERNETHY, T. H. RAMSEY and J. W. ROSS, J. Appl. Phys., 32, 376S (1961).ADSCrossRefGoogle Scholar
  19. 19.
    G. A. WOLFF, B. N. DAS, C. B. LAMPORT, A. I. MLAVSKY and E. A. TRICKETT, Mat. Res. Bull., 4, S67 (1969).Google Scholar
  20. 20.
    T. S. PLASKETT, S. E. BLUM and L. M. FOSTER, J. Electrochem. Soc., 114, 1304 (1967).CrossRefGoogle Scholar
  21. 21.
    N. HEMMAT, C. B. LAMPORT, A. A. MENNA and G. A. WOLFF, Proc. Accg Conf. on Crystal Growth, p. 79 (1969).Google Scholar
  22. 22.
    N. HEMMAT, C. B. LAMPORT, A. A. MENNA and G. A. WOLFF, Proc. Materials Engrg. & Sciences Div. Biennial Conf. Am. Inst. Engrs., p. 112 (1970).Google Scholar
  23. 23.
    R. O. BELL, S. C. FOOTE, C. B. LAMPORT, A. A. MENNA and G. A. WOLFF, Electroluminescent Light Sources (Tech. Report No. NAS 12–2044, Electronics Res. Ctr., N.A.S.A., July 1970; Accession No. N70–41105, Nat’l Techn. Info. Service).Google Scholar
  24. 24.
    R. O. BELL, S. C. FOOTE, C. B. LAMPORT, A. A. MENNA and G. A. WOLFF, GaxAl1-xAs Laser Diodes, Techn. Report No. DAAK 02–69-C-0071, U.S. Govt. (Dec. 1969).Google Scholar
  25. 25.
    R. O. BELL, N. HEMMAT and F. Wald, Phys. Stat. Sol. (a), 1, 375 (1970).ADSCrossRefGoogle Scholar
  26. 26.
    R. O. BELL and F. WALD, Proc. Int. Symposium on CdTe, A Material for Gamma-Ray Detectors (P. Siffert and A. Cornet eds.), p. VI-1. Centre de Recherches Nucleaires, Strasbourg, France (June 1971).Google Scholar
  27. 27.
    B. PERNER, J. Crystal Growth, 6, 86 (1969).ADSCrossRefGoogle Scholar
  28. 28.
    J. KVAPIL and B. PERNER, J. Cryst. Growth, 8, 162 (1971).ADSCrossRefGoogle Scholar
  29. 29.
    J. J. BRISSOT and A. LEMOGNE, Philips Techn. Rev., 30, 261 (1969).Google Scholar
  30. 30.
    R. O. BELL, B. N. DAS, N. HEMMAT and G. A. WOLFF, Synthesized Electromagnetic Material, Techn. Report No. N00140–67-C-0386, U.S. Govt. (Oct. 1969).Google Scholar
  31. 31.
    B. diBENEDETTO and C. J. CRONAN, J. Am. Ceram. Soc., 51, 364 (1971).CrossRefGoogle Scholar
  32. 32.
    J. J. BRISSOT and C. BELIN, J. Cryst. Growth, 8, 213 (1971).ADSCrossRefGoogle Scholar
  33. 33.
    J. W. TESTER, R. C. REID and G. A. WOLFF, Mat. Res. Bull., 6, 1265 (1971).CrossRefGoogle Scholar
  34. 34.
    G. A. WOLFF, Proc. Int. Symposium on CdTe A Material for Gamma-Ray Detectors (P. Siffert and A. Cornet eds.), p. VI-bis-1. Centre de Recherches Nucleaires, Strasbourg, France (June 1971).Google Scholar
  35. 35.
    G. A. WOLFF, R. A. HEBERT and J. D. BRODER, Proc. Int. Conference on Semiconductors and Phosphors, Garmisch, 1956 (M Schön and H. Welker, eds.), p. 547. Interscience Publishers, Inc., New York (1958).Google Scholar
  36. 36.
    G. A. WOLFF and A. I. MLAVSKY, Proc. Int. Conf. on Adsorption and Crystal Growth, Nancy, June 1965, pp. 339, 711. Edition No. 152. Centre Nationale de la Recherche Scientifique, Paris ye (1965).Google Scholar
  37. 37.
    I. F. NICOLAU, J. Mater. Sci., 5, 623 (1970);ADSCrossRefGoogle Scholar
  38. 37a.
    ibid., 6, 1049 (1971).ADSCrossRefGoogle Scholar
  39. 38.
    M. WEINSTEIN, H. E. LaBELLE, Jr. and A. I. MLAVSKY, J. Appl. Phys., 37, 2913 (1966).ADSCrossRefGoogle Scholar
  40. 39.
    G. A. WOLFF and B. N. DAS, J. Electrochem. Soc., 113, 299 (1966).CrossRefGoogle Scholar
  41. 40.
    L. B. GRIFFITHS, J. Phys. Chem. Solids, 27, 257 (1966).ADSCrossRefGoogle Scholar
  42. 41.
    W. A. TILLER, J. Appl. Phys., 34, 2757, 2763 (1963);ADSCrossRefGoogle Scholar
  43. 41a.
    ibid., 36, 261 (1965).ADSCrossRefGoogle Scholar
  44. 42.
    W. A. TILLER, K. A. JACKSON, J. W. RUTTER and B. CHALMERS, Acta Met., 1, 428 (1953).CrossRefGoogle Scholar
  45. 43.
    W. G. PFANN, Zone Melting, p. 258. Wiley & Sons Inc., New York, London and Sydney (1966).Google Scholar
  46. 44.
    J. P. DISMUKES and L. EKSTROM, TMS AIME, 233, 672 (1965).Google Scholar
  47. 45.
    W. M. YIM and J. P. DISMUKES, J. Phys. Chem. Solids, 28, S187 (1967).Google Scholar
  48. 46.
    C. H. L. GOODMAN, Research, 7, 168 (1954).Google Scholar
  49. 47.
    M. B. PANISH and S. SUMSKI, J. Phys. Chem. Solids, 30, 129 (1969).ADSCrossRefGoogle Scholar
  50. 48.
    M. R. LORENZ, W. REUTER, W. P. DUMKE, R. J. CHICOTKA, G. D. PETTIT and J. M. WOODALL, Appl. Phys. Letters, 13, 421 (1969).ADSCrossRefGoogle Scholar
  51. 49.
    diBENETTO and G. A. WOLFF, Single Crystals of Ferrite and B. Ferroelectric Materials (B. diBenedetto, ed.) Appendix 6, p. 100. Report ECOM-00413, U.S. Govt. (Dec. 1968).Google Scholar
  52. 50.
    A. F. IOFFE, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Ltd., London (1957).Google Scholar
  53. 51.
    W. G. PFANN, K. E. BENSON and J. H. WERNICK, J. Electronics, 2, 597 (1957).Google Scholar
  54. 52.
    D. T. HURLE, J. B. MULLIN and E. R. PIKE, Solid State Communications, 2, 197 (1964).ADSCrossRefGoogle Scholar
  55. 53.
    D. S. ROBERTSON and B. COCKAYNE, J. Appl. Phys., 37, 927 (1966).ADSCrossRefGoogle Scholar
  56. 54.
    M. KUMAGAWA, M. OZEKI and S. YAMADA, Japan. J. Appl. Phys., 9, 1422 (1970).ADSCrossRefGoogle Scholar
  57. 55.
    F. WALD, R. O. BELL and A. A. MENNA, Cadmium Telluride Detectors, Interim Techn. Report NYO-4202–1, AEC (July 1971).Google Scholar
  58. 56.
    P. H. KECK and M. J. E. GOLAY, Phys. Rev., 89, 1297 (1954).ADSCrossRefGoogle Scholar
  59. 57.
    M. A. WRIGHT, J. Electrochem. Soc., 112, 1114 (1965).CrossRefGoogle Scholar
  60. 58.
    R. J. PERUSEK, U.S. Patent No. 3,669,763 (1972).Google Scholar
  61. 59.
    V. I. PAVLICHENKO, I. V. RYZHIKOV, Yu. M. SULEIMANOV and Yu. M. SHVAIDAK, Sov. Phys. —Solid State, 10, 2801 (1972).Google Scholar
  62. 60.
    V. N. LOZOVSKII and G. S. KONSTANTINOVA, Sov. Phys.Crystallogr. 16, 1060 (1971).Google Scholar
  63. 61.
    V. F. YIP and W. R. WILCOX, Bull. Am. Phys. Soc. (II), 17, 1 185 (1972).Google Scholar
  64. 62.
    C. E. CHANG and W. R. WILCOX, Bull. Am. Phys. Soc. (II), 17, 1185 (1972); W. R. Wilcox, New Methods for Growth and Characterization of GaAs and Mixed III—V Semiconductor Crystals, Semi-Annual Technical Report ARPA (DAHC 15–71-G6) AD-739374 (January 1972).Google Scholar
  65. 63.
    R. O. BELL, to be published in J. Electrochem Soc. Google Scholar
  66. 64.
    W. V. MUENCH and K. GILLESSEN, presentation at International Conf. on SiC, Miami Beach, Florida (September 1973).Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • G. A. Wolff
    • 1
  • A. I. Mlavsky
    • 2
  1. 1.General Electric CompanyClevelandUSA
  2. 2.Tyco Laboratories, Inc.WalthamUSA

Personalised recommendations