Advertisement

Mechanisms in Vapour Epitaxy of Semiconductors

  • Don W. Shaw

Abstract

Epitaxial growth may be achieved by a variety of techniques, e.g. solution, flux, gel, molecular beam, and vapour. Vapour phase growth is by far the most widely used technique for semiconductors. It consists of oriented crystal growth of a material transported from the gas phase onto a suitable solid substrate. Strictly speaking, vapour phase growth should refer to growth due to condensation of the material from its own vapours, as in an evaporation-condensation process. However, the term is commonly used to describe all epitaxial growth processes involving transport from the gas phase, whether the gaseous medium actually contains vapours of the crystallizing material or simply a mixture of gaseous reactants capable of undergoing chemical conversion at the solid surface to yield the epitaxial layer. In fact, the most commonly employed techniques for semiconductor epitaxy correspond to the latter case, where a gaseous compound or combination of compounds is transported to the vicinity of the solid surface, at which point a chemical reaction occurs which results in formation and deposition of the semiconductor material. Although such a process is more correctly called gas phase epitaxy, the term vapour epitaxy is in widespread use and will be used here also.

Keywords

Mass Transport Mass Transfer Coefficient Epitaxial Growth Total Flow Rate Kinetic Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. KUROV, Soviet Phys.-Solid State, 3, 1512 (1962).Google Scholar
  2. 2.
    E. I. GIVARGIZOV, Soviet Phys.-Solid State, 6, 1415 (1964).Google Scholar
  3. 3.
    S. E. MAYER and D. E. SHEA, J. Electrochem. Soc., 111, 550 (1964).CrossRefGoogle Scholar
  4. 4.
    D. W. SHAW, J. Electrochem. Soc., 113, 905 (1966).Google Scholar
  5. 5.
    K. L. DENBIGH, Chemical Reactor Theory, p. 29. Cambridge Univ. Press, London (1965).Google Scholar
  6. 6.
    W. E. BAKER and D. M. J. COMPTON, IBM J. Res. Develop., 4, 269 (1960).CrossRefGoogle Scholar
  7. 7.
    W. E. BAKER and D. M. J. COMPTON, IBM J. Res. Develop., 4, 275 (1960).CrossRefGoogle Scholar
  8. 8.
    F. V. WILLIAMS, J. Electrochem. Soc.. 111, 887 (1964).CrossRefGoogle Scholar
  9. 9.
    W. H. SHEPHERD, J. Electrochem. Soc.. 115, 652 (1968).CrossRefGoogle Scholar
  10. 10.
    V. F. DORFMAN and M. S. BELOKON’, Growth of Crystals, Vol. 8, p. 128. Consultants Bureau, New York and London (1969).Google Scholar
  11. 11.
    V. J. SILVESTRI, J. Electrochem. Soc., 116, 81 (1969).CrossRefGoogle Scholar
  12. 12.
    L. A. LAUKMANIS and I. A. FELTYN, Izv. Akad. Nauk. SSSR, Neorg. Mater., 4, 1275 (1968).Google Scholar
  13. 13.
    E. G. BYLANDER, J. Electrochem. Soc., 109, 1171 (1962).CrossRefGoogle Scholar
  14. 14.
    D. W. SHAW, Proc. 1968 Intern. Sym. on GaAs, p. 50. Institute of Phys. and Phys. Soc., London (1969).Google Scholar
  15. 15.
    A. E. BLAKESLEE, Trans. Met. Soc. AIME, 245, 577 (1969).Google Scholar
  16. 16.
    D. J. DUMIN, Rev. Sci. Instr., 38, 1107 (1967).ADSCrossRefGoogle Scholar
  17. 17.
    R. R. MONCHAMP, W. J. McALEER and P. I. POLLAK, J. Electrochem. Soc., 111, 880 (1964).CrossRefGoogle Scholar
  18. 18.
    D. W. SHAW, J. Electrochem. Soc., 117, 683 (1970).CrossRefGoogle Scholar
  19. 19.
    F. C. EVERSTEYN, P. J. W. SEVERIN, C. H. D. v. d. BREKEL and H. L. PEEK, J. Electrochem. Soc., 117, 925 (1970).CrossRefGoogle Scholar
  20. 20.
    R. TAKAHASHI, K. SUGAWARA, Y. NAKAZAWA and Y. KOGA, Chemical Vapor Deposition, p. 695. Electrochem. Soc., New York (1970).Google Scholar
  21. 21.
    L. L. BIRCUMSHAW and A. C. RIDDIFORD, Quarterly Revs. (London). 6, 157 (1952).CrossRefGoogle Scholar
  22. 22.
    A. REISMAN and M. BERKENBLIT, J. Electrochem. Soc., 113, 146 (1966).CrossRefGoogle Scholar
  23. 23.
    A. S. GROVE, Physics and Technology of Semiconductor Devices, John Wiley and Sons. New York (1967).Google Scholar
  24. 24.
    G. EHRLICH and F. G. HUDDA, J. Chem. Phys., 44, 1039 (1966).ADSCrossRefGoogle Scholar
  25. 25.
    B. A. JOYCE, J. Cryst. Growth, 3,4, 43 (1968).ADSCrossRefGoogle Scholar
  26. 26.
    D. R. STULL and G. C. SINKE, Thermodynamic Properties of the Elements, American Chemical Society, Washington (1956).Google Scholar
  27. 27.
    F. ROSSINI, D. WAGMAN, W. EVANS, S. LEVINE and I. JAFFE, National Bureau of Standards Circular 500 (1952).Google Scholar
  28. 28.
    D. R. STULL, ed., JANAF Thermochemical Tables, Dow Chemical Co., Midland, Mich. (1965).Google Scholar
  29. 29.
    K. K. KELLEY, U.S. Bur. Mines Bull. 477 (1950).Google Scholar
  30. 30.
    J. P. COUGHLIN, U.S. Bur. Mines Bull. 542 (1954).Google Scholar
  31. 31.
    K. K. Kelley, U.S. Bur. Mines Bull. 584 (1960).Google Scholar
  32. 32.
    K. K. KELLEY and E. G. KING, U.S. Bur. Mines Bull. 592 (1961).Google Scholar
  33. 33.
    A. GLASSNER, Thermochemical Properties of the oxides, Fluorides, and Chlorides to 2500°K., U.S. Atomic Energy Commission, ANL5750 (1960).Google Scholar
  34. 34.
    L. BREWER, L. A. BROMLEY, P. W. GILES and N. L. LOFGREN, The Chemistry and Metallurgy of Miscellaneous Materials (L. L. Quill, ed.). McGraw-Hill, New York (1960).Google Scholar
  35. 35.
    O. KUBASCHEWSKI and E. L. Evans, Metallurgical Thermochemistry, Pergamon Press, London (1958).Google Scholar
  36. 36.
    J. H. E. JEFFES, J. Cryst. Growth, 3, 4, 13 (1968).ADSCrossRefGoogle Scholar
  37. 37.
    R. F. LEVER, IBM J. Res. Develop., 8, 460 (1964).CrossRefGoogle Scholar
  38. 38.
    D. T. J. HURLE and J. B. MULLIN, J. Phys. Chem. Solids, Suppl. No. 1, 241 (1967).CrossRefGoogle Scholar
  39. 39.
    W. B. WHITE, S. M. JOHNSON and G. B. DANTZIG, J. Chem. Phys., 28, 751 (1958).ADSCrossRefGoogle Scholar
  40. 40.
    L. M. NAPHTALI, Ind. Eng. Chem., 53, 387 (1961)CrossRefGoogle Scholar
  41. 41.
    D. R. CRUISE, J. Phys. Chem., 68, 3797 (1964).CrossRefGoogle Scholar
  42. 42.
    S. H. STOREY and F. VAN ZEGGEREN, Can. J. Chem. Eng., 42, 54 (1964).CrossRefGoogle Scholar
  43. 43.
    D. A. FRANK-KAMENETSKII, Diffusion and Heat Exchange in Chemical Kinetics (translated by N. Thon). Princeton University Press, Princeton, New Jersey (1955).Google Scholar
  44. 44.
    O. A. HOUGEN and K. M. WATSON, Chemical Process Principles, III, Kinetics and Catalysis, John Wiley and Sons, New York (1947).Google Scholar
  45. 45.
    F. A. KUZNETSOV and V. I. BELYI, J. Electrochem. Soc., 117, 785 (1970).CrossRefGoogle Scholar
  46. 46.
    R. W. ANDREWS, D. M. RYNNE and E. G. WRIGHT, Solid State Technol., 12, 61 (1969).CrossRefGoogle Scholar
  47. 47.
    J. E. MAY, J. Electrochem. Soc., 112, 710 (1965).CrossRefGoogle Scholar
  48. 48.
    E. R. GILLILAND, Ind. Eng. Chem., 26, 681 (1934).CrossRefGoogle Scholar
  49. 49.
    J. H. ARNOLD, Ind. Eng. Chem., 22, 1091 (1930).CrossRefGoogle Scholar
  50. 50.
    J. O. HIRSCHFELDER, C. F. CURTISS and R. B. BIRD, Molecular Theory of Gases and Liquids, p. 538. John Wiley and Sons, New York (1954).zbMATHGoogle Scholar
  51. 51.
    C. N. SATTERFIELD and T. K. SHERWOOD, The Role of Diffusion in Catalysis, Addison-Wesley, Reading, Mass (1963).Google Scholar
  52. 52.
    T. O. SEDGWICK, J. Electrochern. Soc., 111, 1381 (1964).CrossRefGoogle Scholar
  53. 53.
    W. RUNYAN, Semiconductor Silicon (R. R. Haberecht and E. L. Kern, eds.), p. 169. Electrochemical Society, New York (1969).Google Scholar
  54. 54.
    S. NIELSEN and G. J. RICH, Microelec. and Reliab., 3, 165, 171 (1964).CrossRefGoogle Scholar
  55. 55.
    C. H. LI, Phys. Stat. Sol., 15, 419 (1966).ADSCrossRefGoogle Scholar
  56. 56.
    M. E. JONES, Reactivity of Solids (R. W. Roberts and R. C. Devries, eds.), p. 433. John Wiley and Sons, New York (1969).Google Scholar
  57. 57.
    W. RIEDL, Przegl. Elektron., 6, 323 (1965).Google Scholar
  58. 58.
    M. J. HARPER and T. J. LEWIS, United Kingdon Ministry of Aviation Report ERDE 6/M/66, Great Britain Explosives Research and Development Establishment, Waltham Abbey, England (1966).Google Scholar
  59. 59.
    L. P. HUNT and E. SIRTL, Chemical Vapor Deposition (J. M. Blocher, Jr. and J. C. Withers, eds.), p. 3. Electrochemical Society, New York (1970).Google Scholar
  60. 60.
    D. J. ASHEN, G. C. BROMBERGER and T. J. LEWIS, J. Appl. Chem., 18, 348 (1968).CrossRefGoogle Scholar
  61. 61.
    W. STEINMAIER, Philips Res. Rep., 18, 75 (1963).Google Scholar
  62. 62.
    H. SEKI and H. ARAKI, Denki Kagaku, 34, 397 (1966).Google Scholar
  63. 63.
    E. WOLF and R. TEICHMANN, Z. Chem., 2, 343 (1962).CrossRefGoogle Scholar
  64. 64.
    H. C. THEUERER, J. Electrochem. Soc., 108, 649 (1961).CrossRefGoogle Scholar
  65. 65.
    E. G. BYLANDER, J. Electrochem. Soc., 109, 1171 (1962).CrossRefGoogle Scholar
  66. 66.
    S. E. BRADSHAW, Int. J. Electronics, 21, 205 (1966).CrossRefGoogle Scholar
  67. 67.
    S. K. TUNG, J. Electrochem. Soc., 112, 436 (1965).CrossRefGoogle Scholar
  68. 68.
    S. MENDELSON, J. Appl. Phys., 35, 1570 (1964).ADSCrossRefGoogle Scholar
  69. 69.
    T. L. CHU, J. Electrochem. Soc., 113, 717 (1966).CrossRefGoogle Scholar
  70. 70.
    W. H. SHEPHERD, J. Electrochem. Soc., 112, 988 (1965).CrossRefGoogle Scholar
  71. 71.
    S. E. BRADSHAW, Int. J. Electronics, 23, 381 (1967).ADSCrossRefGoogle Scholar
  72. 72.
    P. C. RUNDLE, Int. J. Electronics, 24, 405 (1968).CrossRefGoogle Scholar
  73. 73.
    K. SUGAWARA, R. TAKAHASHI, H. TOCHIKUHO and Y. KOGA, Chemical Vapor Deposition (J. M. Blocher, Jr. and J. C. Withers, eds.), p. 713. Electrochemical Society, New York (1970).Google Scholar
  74. 74.
    I. M. SKVORTSOV and V. V. NIKOLAEVA, Izv. Akad. Nauk. SSSR, Neorg. Mat., 6, 1003 (1970).Google Scholar
  75. 75.
    E. G. ALEXANDER, J. Electrochem. Soc., 114, 65C (1967).Google Scholar
  76. 76.
    J. M. CHARIG and B. A. JOYCE, J. Electrochem. Soc., 109, 857 (1962).CrossRefGoogle Scholar
  77. 77.
    A. M. STEIN, J. Electrochem. Soc., 111, 483 (1964).CrossRefGoogle Scholar
  78. 78.
    R. C. BRACKEN, Chemical Vapor Deposition (J. M. Blocher, Jr. and J. C. Withers, eds.), p. 73. Electrochemical Society, New York (1970).Google Scholar
  79. 79.
    B. A. JOYCE and R. R. BRADLEY, J. Electrochem. Soc., 110, 1235 (1963).CrossRefGoogle Scholar
  80. 80.
    E. I. GIVARGIZOV, Sov. Phys.-Solid State, 5, 840 (1963).Google Scholar
  81. 81.
    N. KYLE and J. J. GROSSMAN, J. Electrochem. Soc., 110, 184C (1963).Google Scholar
  82. 82.
    N. N. SHEFTAL and E. I. GIVARGIZOV, Sov. Phys. Cryst., 9, 576 (1965).Google Scholar
  83. 83.
    K. J. MILLER and M. J. GRIECO, J. Electrochem. Soc., 110, 1252 (1963).CrossRefGoogle Scholar
  84. 84.
    S. IIDA and Y. SUGITA, Japan. J. A ppl. Phys., 3 163 (1964)ADSCrossRefGoogle Scholar
  85. 85.
    S. IIDA, Japan. J. Appl. Phys., 5, 138 (1966).ADSCrossRefGoogle Scholar
  86. 86.
    V. F. DORFMAN, I. P. KISLYAKOV and K. A. BOLSHAKOV, Russ. J. Phys. Chem.. 39, 526 (1965).Google Scholar
  87. 87.
    G. A. KUROV, Soviet Phys.-Solid State, 5, 1833 (1964).Google Scholar
  88. 88.
    M. S. SELTZER, N. ALBON, B. PARIS and R. C. HIMES, J. Electrochem. Soc., 114, 102 (1967).CrossRefGoogle Scholar
  89. 89.
    D. EFFER, J. Electrochern. Soc.. 111, 814 (1964).CrossRefGoogle Scholar
  90. 90.
    R. C. TAYLOR, J. Electrochem. Soc. 114, 410 (1967).CrossRefGoogle Scholar
  91. 91.
    KH. A. MAGOMEDOV and N. N. EFTAL, Sov. Phys. Cryst., 9, 756 (1965).Google Scholar
  92. 92.
    A. BOUCHER and L. HOLLAN, J. Electrochem. Soc., 117, 932 (1970).CrossRefGoogle Scholar
  93. 93..
    W. SHAW, J. Electrochem. Soc., 115, 405 (1968).CrossRefGoogle Scholar
  94. 94.
    D. W. SHAW, J. Cryst. Growth. 8, 117 (1971).ADSCrossRefGoogle Scholar
  95. 95.
    H. SEKI, K. MORIYAMA, I. ASAKAWA and S. HOERE, Japan. J. Appl. Phys.. 7, 1324 (1965).ADSCrossRefGoogle Scholar
  96. 96.
    R. E. EWING and P. E. GREENE, J. Electrochem. Soc., 111, 1267 (1964).CrossRefGoogle Scholar
  97. 97.
    D. W. SHAW, J. Electrochem. Soc., 115, 777 (1968).CrossRefGoogle Scholar
  98. 98.
    B. A. JOYCE and R. R. BRADLEY, Phil. Mag., 14, 289 (1966).ADSCrossRefGoogle Scholar
  99. 99.
    G. R. BOOKER and B. A. JOYCE, Phil. Mag., 14, 301 (1966).ADSCrossRefGoogle Scholar
  100. 100.
    B. A. JOYCE, R. R. BRADLEY and G. R. BOOKER, Phil. Mag., 15, 1167 (1967).ADSCrossRefGoogle Scholar
  101. 101.
    E. B. WATTS, R. R. BRADLEY, B. A. JOYCE and G. R. BOOKER, Phil. Mag., 17, 1 163 (1968).CrossRefGoogle Scholar
  102. 102.
    B. A. JOYCE, R. R. BRADLEY, E. B. WATTS and G. R. BOOKER, Phil. Mag., 19, 403 (1969).ADSCrossRefGoogle Scholar
  103. 103.
    J. J. GROSSMAN, J. Electrochem. Soc., 110, 1065 (1963).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • Don W. Shaw
    • 1
  1. 1.Physical Sciences Research LaboratoryTexas Instruments IncorporatedDallasUSA

Personalised recommendations