Vegetative Control of Pulmonary Vascular Compliance and Resistance in Man

  • Carlo Guintini
Part of the Ettore Majorana International Science Series book series (EMISS, volume 14)


The pulmonary vessels are controlled by mechanical factors, especially gravity and the respiratory movements of the lung, by the autonomic nervous system, by changing oxygen and hydrogen ion concentrations and by vasoactive substances. These factors have been studied in controlled animal experiments but we remain to a large extent ignorant as to how they interact in life and, in particular, in man.


Pulmonary Vein Pulmonary Vascular Resistance Pulmonary Circulation Pulmonary Vessel Sympathetic Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barer, G. R. (1981). The physiology of the pulmonary circulstion and methods of study. In: Respiratory Pharmocology, ed. J. G. Widdicombe, Pergamon Press, Oxford, p.345.Google Scholar
  2. 2.
    Weibel, E. R. (1963). Morphometry of the human lung. Springer, Heidelberg.Google Scholar
  3. 3.
    Sobin, S., Tremer, M. H., Fung, Y. C. (1970). Morphometric basis of the sheet flow concept of the pulmonary alveolar microcirculation in the cat. Circ. Res., 26, 397–414.CrossRefGoogle Scholar
  4. 4.
    Richardson, J. B. (1979). Nerve supply to the lungs. State of the Art. Am. Rev. Respir. Dis., 119, 785–802.Google Scholar
  5. 5.
    Spencer, H., Leof, D. (1964). The innervation of the human lung. J. Anat. 98, 599–609.Google Scholar
  6. 6.
    Hung, K. S., Mertweck, M. S., Hardy, J. D., Looslie, C. G. (1972) Innervation of pulmonary alveoli of the mouse lung: an electron microscopic study. Am. J. Anat., 135, 477–496.CrossRefGoogle Scholar
  7. 7.
    Muller, L. R. (1911). Beitrage zur Anatomie, Histologie und Physiologie des Nervus Vagus, zugleich ein Beitrag zur Neurologie des Herzens, der Bronchien und des Magens. Dtsch. Arch. Klin. Med., 101, 421.Google Scholar
  8. 8.
    Verity, M. A., Bevan, J. A. (1968). Fine structural study of the terminal effector plexus, neuromuscular and intermuscular relationships in the pulmonary artery. J. Anat., 103, 49–63.Google Scholar
  9. 9.
    Hebb, C. (1969). Motor innervation of the pulmonary blood vessels of mammals. In: The Pulmonary Circulation and Interstitial Space., ed: A. P. Fishman, H. H. Hecht, Univ. Chicago Press, p.195.Google Scholar
  10. 10.
    Bergofsky, E. H., (1980). Humoral control of the pulmonary circulation. Ann. Rev. Physiol., 42, 221–233.CrossRefGoogle Scholar
  11. 11.
    Guintini, C., Maseri, M., Bianchi, R. (1966). Pulmonary vascular distensibility and lung compliance as modified by dextran infusion and subsequent atropine injection in normal subjects. J. Clin. Invest., 45, 1770–89.CrossRefGoogle Scholar
  12. 12.
    Ingram, R. H., Szidon, J. P., Skalak, R., Fishman, A. P. (1968) . Effects of sympathetic nerve stimulation of the pulmonary arterial tree of the isolated lobe perfused in situ. Circ. Res., 22, 801–15.CrossRefGoogle Scholar
  13. 13.
    Pace, J. B., Cox, R. H., Alvarez-Vara, F., Karreman, G. (1972). Influence of sympathetic nerve stimulation on puomonary hydraulic input power. Am. J. Physiol., 222, 196–201.Google Scholar
  14. 14.
    Gorton, R., Gunnells, J. C., Weissler, A. M., Stead, E. A.Jr. (1961). Effects of atropine and isoproterenol on cardiac output, central venous pressure, and mean transit time of indicators placed at three different sites in the venous system. Circulat. Res., 9, 979.CrossRefGoogle Scholar
  15. 15.
    Aviado, D. M., (1965) . The Lung Circulation. Oxford, Pergamon Press. vol. 1, pp. 343–355.Google Scholar
  16. 16.
    Gorlin, R., McMillian, I.K.R., Medd, W. E., Metthews, M. B., Daley, R. (1955). Dynamics of the circulation in aortic valvular disease. Am. J. Med., 18, 855.CrossRefGoogle Scholar
  17. 17.
    Segel, N., Harris, P., Bishop, J. M. (1960). The effects of synthetic hypertensin on the systemic and pulmonary circulations in man. Clin. Sci., 20, 49.Google Scholar
  18. 18.
    Morkin, E., Levine, O. R., Fishman, A. P. (1964). Pulmonary capillary flow pulse and the site of pulmonary vasoconstriction in the dog. Circ. Res., 15, 146.CrossRefGoogle Scholar
  19. 19.
    Marazzi, A. (1939). Electrical studies on the pharmacology of autonomic synapses. I. The action of parasympathomimetic drugs on sympathetic ganglia. J. Pharmacol. Exp. Ther., 65, 18.Google Scholar
  20. 20.
    Cahen, R. L., Tvede, K. M. (1953). Action of atropine on sympathetic ganglia. Arch. Int. Pharmacodyn, 94, 248.Google Scholar
  21. 21.
    Giuntini, C., Maseri, A., Mariani, C., Contini, C., Donato, L. Right and left ventricular performances as modified by dextran infusion and subsequent atropine injection in normal subjects. In Preparation.Google Scholar
  22. 22.
    DeGeest, H., Levy, M. N., Zieske, H., Lipman, R. I. (1965). Depression of ventricular contractility by stimulation of the vagus nerves. Circ. Res., 17, 222.CrossRefGoogle Scholar
  23. 23.
    Levy, M. N., Lipman, M., Ng, R. I., Zieske, H. (1966). Vagus nerves and baroreceptor control of ventricular performance. Circ. Res., 18, 101.CrossRefGoogle Scholar
  24. 24.
    Enson, Y., Guintini, C., Lewis, M. L., Morris, T. Q., Ferrer, M. I., Harvey, R. M. (1964). The influence of hydrogen ion concentration and hypoxia on the pulmonary circulation. J. Clin. Invest, 43, 1146–1162.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Carlo Guintini
    • 1
  1. 1.C.N.R. Institute of Clinical Physiology and 2nd MedicalClinic of the University of PisaPisaItaly

Personalised recommendations