Skip to main content

Fracture and Fiber Formation of Polyethylene Crystals

  • Chapter
Deformation and Fracture of High Polymers

Abstract

Deformation experiments with substrate free polyethylene single crystals are employed to study the plastic deformation and the formation of fibers from polyethylene single crystals. The observations by transmission electron microscopy and electron diffraction indicate that substrate-free polyethylene crystals fail by brittle fracture at all temperatures between 77 K and 388 K and all strain rates between 10−3 and 10−1 sec−1. The formation of fibers and their molecular structure were studied by drawing fibers from substrate-free polyethylene single crystals. The results suggest that the formation of fibers occurs by a two-step process. The first step is the breaking off of single blocks of folded chains from the single crystals so that a “string of pearls” structure is obtained. If the temperature is sufficiently high, this process is followed by the thermally activated rearrangement of the molecules in the drawn fibers so that a “bamboo structure” results.

The effect of lattice defects present in the drawn polyethylene single crystals on the formation of fibers was studied by introducing crosslinks into the single crystals. The crosslinks were generated by irradiating the polyethylene crystals with 60 kV electrons prior to fiber drawing. It was observed that the introduction of crosslinks results in a network of interconnected fibers the “mesh-size” of which decreases with increasing crosslink density so that, finally (at a dosage of about 200 Mrad), drawing results in a thin continuous film (approximately 15 A thick).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Geil, P. H., Polymer Single Crystals, Interscience Publishers, New York (1963).

    Google Scholar 

  2. Rennecker, D. H., and Geil, P. H., J. Appl. Phys., 31, 1916 (1960).

    Article  Google Scholar 

  3. Geil, P. H., and Rennecker, D. H., J. Polymer Sci., 51, 569 (1961).

    Article  CAS  Google Scholar 

  4. Fischer, E. W., unpublished, quoted in Ref. (1), pp 104 and 442.

    Google Scholar 

  5. Speerschneider, C. J., and Li, C. H., J. Appl. Phys., 33, 1871 (1962).

    Article  CAS  Google Scholar 

  6. Geil, P. H., Anderson, F. R., Wunderlich, B., and Arakawa, T., J. Polymer Sci., Part A, 2, 3707 (1964).

    CAS  Google Scholar 

  7. Geil, P. H., J. Polymer Sci., Part A, 2, 3813, 3835, 3857 (1964).

    Google Scholar 

  8. Kiko, H., Peterlin, A., and Geil, P. H., J. Polymer Sci., Part B, 3, 157, 257, 263 (1965).

    Google Scholar 

  9. Sauer, J. A., Ann. N. Y. Acad. Sci., 155, 517 (1969).

    CAS  Google Scholar 

  10. Cerra, P., Morrow, D. R., and Sauer, J. A., J. Macromol. Sci.-Phys., Part B, 3 (1), 33 (1969).

    Google Scholar 

  11. Gleiter, H., and Argon, A. S., Phil. Mag., 24, 71 (1971).

    Article  CAS  Google Scholar 

  12. Holland, V. F., and Lindenmeyer, P. H., J. Polymer Sci., 57, 589 (1962).

    Article  CAS  Google Scholar 

  13. Charlesby, A., Atomic Radiation and Polymers, Pergamon Press, London, 1960.

    Google Scholar 

  14. Salovey, R., and Bassett, D. C., J. Appl. Phys., 35 3216 (1964).

    Article  CAS  Google Scholar 

  15. Chapiro, A., Radiation Chemistry of Polymeric Systems, Interscience Publishers, New York, 1962.

    Google Scholar 

  16. Orth, H., and Fischer, E. W., Makromol. Chem., 88, 188 (1965).

    Article  CAS  Google Scholar 

  17. Petermann, J., and Gleiter, H., Phil. Mag.,25 813 (1972).

    Article  CAS  Google Scholar 

  18. Hay, I. L., and Keller, A., Nature, 204, 862 (1964).

    Article  Google Scholar 

  19. Pierce, R. H., Tordella, J. P., and Bryant, W. D., J. Am. Chem. Soc.

    Google Scholar 

  20. Tanaka, K., Seto, T., and Hara, T., J. Phys. Soc. Japan, 17, 873 (1962).

    Article  CAS  Google Scholar 

  21. Petermann, J., and Gleiter, H., J. Polymer Sci., Part A-2, 10, 1731 (1972).

    CAS  Google Scholar 

  22. Peach, M., and Koehler, J. S., Phys. Rev., 80, 436 (1950).

    Article  Google Scholar 

  23. Peterlin, A., J. Mat. Sci., 6, 490 (1971).

    Article  CAS  Google Scholar 

  24. Sakaoku, K., and Peterlin, A., Makromol. Chem., 108, 234 (1967).

    Article  Google Scholar 

  25. Hosemann, R., Cackovic, H., and Wilke, W., Naturwissenschaften, 54, 278 (1967).

    Article  CAS  Google Scholar 

  26. Dismore, P. F., and Statton, W. O., J. Polymer Sci., Part C, 13, 133 (1966).

    Google Scholar 

  27. Fischer, E. W., Goddar, H., and Schmidt, G. F., Makromol. Chem., 119, 170 (1968).

    Article  CAS  Google Scholar 

  28. Hearle, J.W.S., J. Polymer Sci., Part C, 20, 215 (1967).

    Google Scholar 

  29. Peterlin, A., J. Polymer Sci., Part C, 9, 61 (1965).

    Google Scholar 

  30. Peterlin, A., Kiko, H., and Geil, P. H., Polymer Letters, 3, 151 (1965).

    Google Scholar 

  31. Peterlin, A., Ingram, P., and Kiko, H., J. Makromol. Chem., 86, 294 (1965).

    Google Scholar 

  32. Anderson, F. R., J. Polymer Sci., Part C, 8, 275 (1965).

    Google Scholar 

  33. Gubanov, A. I., and Chevychelov, A. D., Soy. Phys. Solid State, 4, 4 (1962).

    Google Scholar 

  34. Pechold, A., J. Polymer Sci., Part C, 32, 123 (1971).

    Google Scholar 

  35. Statton, W. O., J. Polymer Sci., Part C, 32, 219 (1971).

    Google Scholar 

  36. Fischer, E. W., Goddar, H., and Schmidt, G. F., Kolloid-Z. u. Z. Polymere, 226, 30 (1968).

    Article  CAS  Google Scholar 

  37. Peterlin, A., and Olf, H. G., J. Polymer Sci., Part A-2, 4, 587 (1966).

    CAS  Google Scholar 

  38. Hyndman, D., and Origlio, G. F., J. Polymer Sci., 39, 556 (1959).

    Article  CAS  Google Scholar 

  39. Gilman, J. J., Chapter in Fracture, B. L. Averbach (Ed.), M.I.T., Wiley, N.Y. (1959), p 193.

    Google Scholar 

  40. Statton, W. O., Koenig, J. L., and Hannon, M. J., J. Appl. Phys., 41, 4290 (1970).

    Article  CAS  Google Scholar 

  41. Drowan, E., Repts. Progr. Phys., XII, 185 (1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gleiter, H., Hornbogen, E., Petermann, J. (1973). Fracture and Fiber Formation of Polyethylene Crystals. In: Kausch, H.H., Hassell, J.A., Jaffee, R.I. (eds) Deformation and Fracture of High Polymers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1263-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1263-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1265-0

  • Online ISBN: 978-1-4757-1263-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics