Fracture and Fiber Formation of Polyethylene Crystals

  • H. Gleiter
  • E. Hornbogen
  • J. Petermann


Deformation experiments with substrate free polyethylene single crystals are employed to study the plastic deformation and the formation of fibers from polyethylene single crystals. The observations by transmission electron microscopy and electron diffraction indicate that substrate-free polyethylene crystals fail by brittle fracture at all temperatures between 77 K and 388 K and all strain rates between 10−3 and 10−1 sec−1. The formation of fibers and their molecular structure were studied by drawing fibers from substrate-free polyethylene single crystals. The results suggest that the formation of fibers occurs by a two-step process. The first step is the breaking off of single blocks of folded chains from the single crystals so that a “string of pearls” structure is obtained. If the temperature is sufficiently high, this process is followed by the thermally activated rearrangement of the molecules in the drawn fibers so that a “bamboo structure” results.

The effect of lattice defects present in the drawn polyethylene single crystals on the formation of fibers was studied by introducing crosslinks into the single crystals. The crosslinks were generated by irradiating the polyethylene crystals with 60 kV electrons prior to fiber drawing. It was observed that the introduction of crosslinks results in a network of interconnected fibers the “mesh-size” of which decreases with increasing crosslink density so that, finally (at a dosage of about 200 Mrad), drawing results in a thin continuous film (approximately 15 A thick).


Carbon Film Crystalline Region Fiber Axis Fiber Formation Fiber Texture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geil, P. H., Polymer Single Crystals, Interscience Publishers, New York (1963).Google Scholar
  2. 2.
    Rennecker, D. H., and Geil, P. H., J. Appl. Phys., 31, 1916 (1960).CrossRefGoogle Scholar
  3. 3.
    Geil, P. H., and Rennecker, D. H., J. Polymer Sci., 51, 569 (1961).CrossRefGoogle Scholar
  4. 4.
    Fischer, E. W., unpublished, quoted in Ref. (1), pp 104 and 442.Google Scholar
  5. 5.
    Speerschneider, C. J., and Li, C. H., J. Appl. Phys., 33, 1871 (1962).CrossRefGoogle Scholar
  6. 6.
    Geil, P. H., Anderson, F. R., Wunderlich, B., and Arakawa, T., J. Polymer Sci., Part A, 2, 3707 (1964).Google Scholar
  7. 7.
    Geil, P. H., J. Polymer Sci., Part A, 2, 3813, 3835, 3857 (1964).Google Scholar
  8. 8.
    Kiko, H., Peterlin, A., and Geil, P. H., J. Polymer Sci., Part B, 3, 157, 257, 263 (1965).Google Scholar
  9. 9.
    Sauer, J. A., Ann. N. Y. Acad. Sci., 155, 517 (1969).Google Scholar
  10. 10.
    Cerra, P., Morrow, D. R., and Sauer, J. A., J. Macromol. Sci.-Phys., Part B, 3 (1), 33 (1969).Google Scholar
  11. 11.
    Gleiter, H., and Argon, A. S., Phil. Mag., 24, 71 (1971).CrossRefGoogle Scholar
  12. 12.
    Holland, V. F., and Lindenmeyer, P. H., J. Polymer Sci., 57, 589 (1962).CrossRefGoogle Scholar
  13. 13.
    Charlesby, A., Atomic Radiation and Polymers, Pergamon Press, London, 1960.Google Scholar
  14. 14.
    Salovey, R., and Bassett, D. C., J. Appl. Phys., 35 3216 (1964).CrossRefGoogle Scholar
  15. 15.
    Chapiro, A., Radiation Chemistry of Polymeric Systems, Interscience Publishers, New York, 1962.Google Scholar
  16. 16.
    Orth, H., and Fischer, E. W., Makromol. Chem., 88, 188 (1965).CrossRefGoogle Scholar
  17. 17.
    Petermann, J., and Gleiter, H., Phil. Mag.,25 813 (1972).CrossRefGoogle Scholar
  18. 18.
    Hay, I. L., and Keller, A., Nature, 204, 862 (1964).CrossRefGoogle Scholar
  19. 19.
    Pierce, R. H., Tordella, J. P., and Bryant, W. D., J. Am. Chem. Soc. Google Scholar
  20. 20.
    Tanaka, K., Seto, T., and Hara, T., J. Phys. Soc. Japan, 17, 873 (1962).CrossRefGoogle Scholar
  21. 21.
    Petermann, J., and Gleiter, H., J. Polymer Sci., Part A-2, 10, 1731 (1972).Google Scholar
  22. 22.
    Peach, M., and Koehler, J. S., Phys. Rev., 80, 436 (1950).CrossRefGoogle Scholar
  23. 23.
    Peterlin, A., J. Mat. Sci., 6, 490 (1971).CrossRefGoogle Scholar
  24. 24.
    Sakaoku, K., and Peterlin, A., Makromol. Chem., 108, 234 (1967).CrossRefGoogle Scholar
  25. 25.
    Hosemann, R., Cackovic, H., and Wilke, W., Naturwissenschaften, 54, 278 (1967).CrossRefGoogle Scholar
  26. 26.
    Dismore, P. F., and Statton, W. O., J. Polymer Sci., Part C, 13, 133 (1966).Google Scholar
  27. 27.
    Fischer, E. W., Goddar, H., and Schmidt, G. F., Makromol. Chem., 119, 170 (1968).CrossRefGoogle Scholar
  28. 28.
    Hearle, J.W.S., J. Polymer Sci., Part C, 20, 215 (1967).Google Scholar
  29. 29.
    Peterlin, A., J. Polymer Sci., Part C, 9, 61 (1965).Google Scholar
  30. 30.
    Peterlin, A., Kiko, H., and Geil, P. H., Polymer Letters, 3, 151 (1965).Google Scholar
  31. 31.
    Peterlin, A., Ingram, P., and Kiko, H., J. Makromol. Chem., 86, 294 (1965).Google Scholar
  32. 32.
    Anderson, F. R., J. Polymer Sci., Part C, 8, 275 (1965).Google Scholar
  33. 33.
    Gubanov, A. I., and Chevychelov, A. D., Soy. Phys. Solid State, 4, 4 (1962).Google Scholar
  34. 34.
    Pechold, A., J. Polymer Sci., Part C, 32, 123 (1971).Google Scholar
  35. 35.
    Statton, W. O., J. Polymer Sci., Part C, 32, 219 (1971).Google Scholar
  36. 36.
    Fischer, E. W., Goddar, H., and Schmidt, G. F., Kolloid-Z. u. Z. Polymere, 226, 30 (1968).CrossRefGoogle Scholar
  37. 37.
    Peterlin, A., and Olf, H. G., J. Polymer Sci., Part A-2, 4, 587 (1966).Google Scholar
  38. 38.
    Hyndman, D., and Origlio, G. F., J. Polymer Sci., 39, 556 (1959).CrossRefGoogle Scholar
  39. 39.
    Gilman, J. J., Chapter in Fracture, B. L. Averbach (Ed.), M.I.T., Wiley, N.Y. (1959), p 193.Google Scholar
  40. 40.
    Statton, W. O., Koenig, J. L., and Hannon, M. J., J. Appl. Phys., 41, 4290 (1970).CrossRefGoogle Scholar
  41. 41.
    Drowan, E., Repts. Progr. Phys., XII, 185 (1948).Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • H. Gleiter
    • 1
  • E. Hornbogen
    • 1
  • J. Petermann
    • 1
  1. 1.Institut für WerkstoffeRuhr-Universität BochumBochumWest Germany

Personalised recommendations