On the Nonlinear Biaxial Stress-Strain Behavior of Rubberlike Polymers

  • G. W. Becker
  • O. Krüger


The nonlinear biaxial deformation behavior of rubberlike polymers has been determined by means of a special device. Using specimens in the form of square, thin sheets, stress-relaxation measurements have been carried out at room temperature for three materials: an unfilled natural rubber, SBR, and a plasticized polyvinyl chloride. As can be shown, there are simple transformation equations, depending only upon characteristic quantities of the material, that give one single master curve for each material. These transform the various stress-strain curves measured for different ratios of the two stresses.


Stress Ratio Natural Rubber Master Curve Shift Factor Deformation Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becker, G. W., and Rademacher, H.-J., J. Polymer Sci., 58, 621 (1962).CrossRefGoogle Scholar
  2. 2.
    Green, A. E., and Adkins, J. E., Large Elastic Deformations and Non-Linear Continuum Mechanics, Oxford University Press, London, 1960.Google Scholar
  3. 3.
    Noll, W., and Truesdell, C., “The Non-Linear Field Theories of Mechanics”, in Encyclopedia of Physics,S. Flügge (Ed.), Springer-Verlag, Berlin, 1965, Vol III/3.Google Scholar
  4. 4.
    Rivlin, R. S., and Saunders, D. W., Phil. Trans. Roy. Soc. London,A243, 251 (1950/51).Google Scholar
  5. 5.
    Blatz, P. L., and Ko, W. L., Trans. Soc. Rheology, 6, 223 (1962).CrossRefGoogle Scholar
  6. 6.
    Becker, G. W., Testing Device for Biaxial Deformation of Elastomeric Materials, Invention Report No. 30–616, Jet Propulsion Laboratory, Pasadena, California, 1964.Google Scholar
  7. 7.
    Obata, Y., Kawabata, S., and Kawai, H., J. Polymer Sci., Part A-2, 8, 903 (1970).Google Scholar
  8. 8.
    San Miguel, A., Experimental Mechanics, 12, 155 (1972).Google Scholar
  9. 9.
    Becker, G. W., J. Polymer Sci., Part C, 16, 2893 (1967).Google Scholar
  10. 10.
    Gent, A. N., and Thomas, A. G., J. Polymer Sci., 28, 625 (1958).CrossRefGoogle Scholar
  11. 11.
    Rivlin, R. S., Phil. Trans. Roy. S.c. London, A240, 459 (1948), A241, 379 (1949).Google Scholar
  12. 12.
    Treloar, L.R.G., The Physics of Rubber Elasticity, 2nd Ed., Clarendon Press, Oxford, 1958.Google Scholar
  13. 13.
    Bartenew, G.M., Nikiforow, W. P., and Awrustschenko, B.Ch., Paste u. Kautschuk, 17, 37 (1970).Google Scholar
  14. 14.
    Tschoegl, N. W., Rubber Chem. Technology, 45, 60 (1972).CrossRefGoogle Scholar
  15. 15.
    Hencky, H., Z. Techn. Phys., 9, 215 (1928).Google Scholar
  16. 16.
    Valanis, K. C., and Landei, R. F., J. Appl. Phys., 38, 2997 (1967).CrossRefGoogle Scholar
  17. 17.
    Becker, G. W., and Krüger, O., Die Deformation hochpolymerer Werkstoffe im dreiachsigen Spannungszustand, Research Report Be 391/1, Deutsche Forschungsgemeinschaft, 1972.Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • G. W. Becker
    • 1
  • O. Krüger
    • 1
  1. 1.Bundesanstalt für MaterialprüfungBerlinGermany

Personalised recommendations