Concluding Agenda Discussion: Critical Issues

  • J. C. Halpin
  • J. A. Hassell


Historically, a colloquium of this nature documents a turning point in the science of polymeric solids. This was illustrated in the introductory lectures of H. F. Mark and T. Alfrey by delineating the traditional interests of the material scientists in achieving an understanding of the concept of a micromolecule (and the conditions of its formation) so as to enable our society to produce new and unique synthetic materials. This goal was projected and achieved within the past 60 years. Achievement in this area has been truly breathtaking in both its scope and rapidity. In fact, as Dr. Hansen has pointed out in the banquet address, the polymer chemist has probably explored all the major domains of chemical bonding systems (organic and inorganic) suitable for polymer forming processes. While it may be correctly argued that the chemist continues to possess the capacity to produce new compounds, the realized or anticipated properties of these compounds do not show high promise of social or commercial utility solely on the basis of their general availability. In this regard, a substance (be it polymeric, ceramic, or metallic) becomes a useful material only when it is employed to make useful things.


Polymeric Solid Hydrostatic Extrusion Wedge Disclination Initial Flaw Size Metallic Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gilman, J.J., “A Unified View of Flow Mechanics in Materials”, in Physics of Strength and Plasticity, A.S. Argon(Ed.), MIT Press(1969)Google Scholar
  2. 2.
    Li, J.C.M., in this volume.Google Scholar
  3. 3.
    Pechhold, W., (a) this volume and (b) in Molecular Order — Molecular Motion: Their Response to Macroscopic Stress, H. H. Kausch (Ed.), Polymer Symposium No.32, Wiley-Interscience (1971).Google Scholar
  4. 4.
    Reneker, D. H., “Point Dislocations in Crystals in High Polymer Molecules”, J. Polymer Sci., 59, 539 (1962).Google Scholar
  5. 5.
    Kedzie, R. W., paper presented at American Physical Society Meeting, Baltimore, March (1962).Google Scholar
  6. 6.
    Flory, P. J., Statistical Mechanics of Chain Molecules, Wiley-Interscience (1969).Google Scholar
  7. 7.
    Bueche, F., Physical Properties of Polymers, Wiley-Interscience (1962).Google Scholar
  8. 8.
    Ferry, J. D., Viscoelastic Properties of Polymers, John Wiley & Sons (1970).Google Scholar
  9. 9.
    Robertson, R. E., “An Equation for the Yield Stress of a Glassy Polymer”, in Polymer Modification of Rubbers and Plastics, H. Keskkala (Ed.), Applied Polymer Symposium No. 7, Wiley-Interscience (1968).Google Scholar
  10. 10.
    Ashton, J. E., Halpin, J. C., and Petit, P. H., Primer on Composite Materials: Analysis, Technomic, Stamford, Conn. (1969).Google Scholar
  11. 11.
    Halpin, J. C., and Nicolais, L., “Materiali Compositi’s Relazioni tra Proprieta e Struttura”, Ing. Chem. Italiano, 7, 173 (1971).Google Scholar
  12. 12.
    Halpin, J. C., and Kardos, J. L., “Moduli of Crystalline Polymers Employing Composite Theory”, J. Appl. Phys., 43, 2235 (1972).CrossRefGoogle Scholar
  13. 13.
    Jerina, K. L., and Halpin, J. C., “Strength of Molded Discontinuous Fiber Composites”, AFML-TR-72–148.Google Scholar
  14. 14.
    De Boer, J. H., “The Influence of Van der Waal’s Forces and Primary Bonds in Binding Energy Strength and Orientation, with Special Reference to Some Artificial Resins, Trans. Faraday Soc., 32, 19 (1936).Google Scholar
  15. 15.
    MacMillan, N. H., “The Theoretical Strength cf Solids”, J. Mater. Sci., 7, 239 (1972).CrossRefGoogle Scholar
  16. 16.
    Frenkel, J., Z. Physik, 37, 572 (1926).CrossRefGoogle Scholar
  17. 17.
    Imada, K., Vamamoto, T., Shigematsu, K., and Takayanagi, M., “Crystal Orientation and Some Properties of Solid-State Extrudate of Linear Polyethylene”, J. Mater. Sci., 6, 537 (1971);CrossRefGoogle Scholar
  18. Pennings, A. J., Schonteten, C.J.H., and Kiel, A. M., “Hydrodynamically Induced Crystallization of Polymers from Solution: V. Tensile Properties of Fibrillar Polyethylene Crystals”, J. Polymer Sci., Part 6, No. 38, 167 (1972);Google Scholar
  19. Williams, T., “Hydrostatically-Extruded Polypropylene”, J. Mater. Sci., 8, 59 (1973);CrossRefGoogle Scholar
  20. Yang of Bell Laboratories, results were communicated by H. Mark.Google Scholar
  21. 18.
    Halpin, J. C., Jerina, K. L., and Johnson, T. A., “Characterization of Composites for the Purpose of Reliability Evaluation”, ASTM STP 521, Philadelphia, Pa. (1973), p. 3;Google Scholar
  22. Halpin, J. C., and Polley, H. W., “Observations on the Fracture of Viscoelastic Bodies”, J. Comp. Mat., 1, 64 (1967).Google Scholar
  23. 19.
    Flory, P. J., J. Polymer Sci., 49, 105 (1961).CrossRefGoogle Scholar
  24. 20.
    Cleerman, K. J., Karam, H. J., and Williams, J. L., Modern Plastics, 30 (a), 119 (1953).Google Scholar
  25. 21.
    Cleerman, K. J., “Injection Molding of Shapes of Rotational Symmetry with Multiaxial Orientation”, SPE Journal, 23, 4347 (1967);Google Scholar
  26. Cleerman, K. J., “Injection Molding of Shapes of Rotational Symmetry with Multiaxial Orientation”, SPE Journal, 25, 55 (1969).Google Scholar
  27. 22.
    Cleerman, K. J., Schrenk, W. J., and Thomas, L. S., “Bottle Blowing Using Multiaxially Oriented Molded Parisons”, SPE Journal, 24, 27–31 (1968).Google Scholar
  28. 23.
    Schrenk, W. J., and Alfrey, T., “Some Physical Properties of Multilayered Films”, Polymer Eng. Sci., 9, 393–399 (1969);CrossRefGoogle Scholar
  29. Alfrey, T., Gurnee, E. F., and Schrenk, W. J., “Physical Optics of Iridescent Multilayered Films”, Ibid, 9, 400–404 (1969);Google Scholar
  30. Schrenk, W. J., and Alfrey, T., “Co Extrusion and Blown Multilayer Film”, presented at the ACS Symposium on Coextruded Plastic Films, Fibers and Composites, April 9–14, 1972;Google Scholar
  31. Radford, J. A., Alfrey, T., and Schrenk, W. J., “Reflectivity of Iridescent Coextruded Multilayered Plastic Films”, Polymer Eng. Sci., 13, 216–221 (1973).CrossRefGoogle Scholar
  32. 24.
    Li, H. L., Koch, P. J., Prevorsek, D. C., and Oswald, H. J., “Factors Affecting the Depth of Draw in a Cold Forming Operation”, J. Macromol. Sci.-Phys., B4 (3), 687 (1970).CrossRefGoogle Scholar
  33. 25.
    Wissbrum, K. F., “Force Requirements in Forging of Crystalline Polymers”, Polymer Eng. Sci., 11, 28 (1971).CrossRefGoogle Scholar
  34. 26.
    McKelvey, J. M., Polymer Processing, John Wiley & Sons, N. Y. (1962), Chapter 12. 4.Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • J. C. Halpin
    • 1
  • J. A. Hassell
    • 2
  1. 1.Air Force Materials LaboratoryWright-Patterson Air Force BaseUSA
  2. 2.Battelle-ColumbusUSA

Personalised recommendations