Advertisement

Fast Fracture in PMMA

  • M. F. Kanninen
  • A. R. Rosenfield
  • R. G. Hoagland

Abstract

A combined experimental and analytical study of rapid crack propagation in PMMA is described. The experiments employed wedge-loaded, double-cantilever-beam test specimens with blunt starting notches. For the analysis, a finite-difference procedure was used to solve the equations of motion of a beam-on-elastic-foundation model of the test specimen. In both experiment and analysis, crack propagation was found to occur at an essentially constant speed which was maintained until shortly before crack arrest. The magnitude of the observed speeds depended upon the initial bluntness (but only slightly on other dimensions of the specimen) and bore the same relation to the elastic-bar-wave speed Co as that observed in similar experiments on high-strength steel. The frequency of parabolic markings on the fracture surface was found to be related to the dynamic fracture toughness.

Keywords

Crack Length Beam Deflection Crack Arrest Crack Speed Dynamic Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoagland, R. G., Rosenfield, A. R., and Hahn, G. T., Met. Trans., 3, 123 (1972).CrossRefGoogle Scholar
  2. 2.
    Rosenfield, A. R., and Mincer, P. M., J. Polymer Sci., Part C, 32, 283 (1971).Google Scholar
  3. 3.
    Hoagland, R. G., Kanninen, M. F., Markworth, A. J., Mincer, P. N., and Rosenfield, A. R., Intern. J. Fracture Mech., 8, 337 (1972).CrossRefGoogle Scholar
  4. 4.
    Hahn, G. T., Hoagland, R. G., Kanninen, M. F., and Rosenfield, A. R., Proceedings of the International Conference on Dynamic Crack Propagation, Lehigh University, July 10–12, 1972, to be published.Google Scholar
  5. 5.
    Hahn, G. T., Hoagland, R. G., Kanninen, M. F., and Rosenfield, A. R., paper presented at Third International Conference on Fracture, Munich, Germany, April, 1973.Google Scholar
  6. 6.
    Benbow, J. J., and Roesler, F. C., Proc. Phys. Soc. (London), B70, 201 (1957).CrossRefGoogle Scholar
  7. 7.
    Gilman, J. J., Fracture, Averbach, B. L., et al. (Ed.), MIT Press, Cambridge (1959), p 193.Google Scholar
  8. 8.
    Berry, J. P., J. Mech. Phys. Solids, 8, 194 (1960).CrossRefGoogle Scholar
  9. 9.
    Kanninen, M. F., Intern. J. Fracture Mech., 9, 83 (1973).Google Scholar
  10. 10.
    Cotterell, B., Appl. Mater. Res., 4, 227 (1965).Google Scholar
  11. 11.
    Manogg, P., Physics of Non-Crystalline Solids, Prins, J. A. (Ed.), North-Holland Press, Amsterdam (1965), p 481.Google Scholar
  12. 12.
    Williams, J. G., Williams, J. C., and Turner, C. E., Polymer Eng. Sci., 8, 130 (1968).CrossRefGoogle Scholar
  13. 13.
    Radon, J. C., and Fitzgerald, N. P., Eng. Mater. Design, 13, 1125 (1970).Google Scholar
  14. 14.
    Chubb, J. P., and Congleton, J., Intern. J. Fracture Mech., 8, 227 (1972).CrossRefGoogle Scholar
  15. 15.
    Green, A. K., and Pratt, P. L., Imperial College, London, private communication (1972).Google Scholar
  16. 16.
    Carlsson, J., Dahlberg, L., and Nilsson, F., Proceedings of the International Conference on Dynamic Crack Propagation, Lehigh University, July 10–12, 1972, to be published.Google Scholar
  17. 17.
    Paxson, T. L., and Lucas, R. A., ibid.Google Scholar
  18. 18.
    Broutman, L. J., and Kobayashi, T., ibid.Google Scholar
  19. 19.
    Cotterell, B., Intern. J. Fracture Mech., 4, 209 (1965).Google Scholar
  20. 20.
    Chubb, J. P., and Congleton, J., Proceedings of the International Conference on Dynamic Crack Propagation, Lehigh University, July 10–12, 1972, to be published.Google Scholar
  21. 21.
    Clark, A.B.J., and Irwin, G. R., Exp. Mech., 6, 323 (1966).Google Scholar
  22. 22.
    Bradley, W. B., and Kobayashi, A. S., Eng. Fracture Mech., 3, 317 (1971).CrossRefGoogle Scholar
  23. 23.
    Burns, S. J., and Bilek, Z. J., Proceedings of the International Conference on Dynamic Crack Propagation, Lehigh University, July 10–12, 1972, to be published.Google Scholar
  24. 24.
    Forsythe, G. E., and Wasow, W. R., Finite Difference Methods for Partial Differential Equations, Wiley, New York (1960), p 131.Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • M. F. Kanninen
    • 1
  • A. R. Rosenfield
    • 1
  • R. G. Hoagland
    • 1
  1. 1.Columbus LaboratoriesBattelleColumbusUSA

Personalised recommendations