A Deformation Theory of Polymers

  • K. H. Anthony
  • E. Kröner


For the bundle model of polymers, a quantitative nonlinear deformation theory is established using the methods of non-Euclidean geometries. The physical basis is discussed. Similarities between polymers and atomic crystals are shown.

The structure defect “disclination” is introduced into the bundle model. By means of this defect, the meander model is reduced to a particular arrangement of disclinations.

The properties of polymers are assumed to depend on the existence, the properties, and the interaction effects of structure defects. Continuum theory may thus be a powerful tool for quantitative investigations. The deformation theory established in this paper is the basis of such a continuum theory.


Vector Field Molecular Chain Continuum Theory Deformation Theory Parallel Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anthony, K. H., Arch. Rat. Mech. Anal., 37, 161 (1970).CrossRefGoogle Scholar
  2. 2.
    Anthony, K. H., Arch. Rat. Mech. Anal., 39, 43 (1970).CrossRefGoogle Scholar
  3. 3.
    Anthony, K. H., Arch. Rat. Mech. Anal., 40, 50 (1971).CrossRefGoogle Scholar
  4. 4.
    Kroner, E., Arch. Rat. Mech. Anal., 4, 273 (1960).CrossRefGoogle Scholar
  5. 5.
    Kroner, E., and Seeger, A., Arch. Rat. Mech. Anal., 3, 97 (1959).CrossRefGoogle Scholar
  6. 6.
    Teodosiu, C., Rev. Roumaine Sci. Tech., S6. Mécan. Appl., 12, 961 (1967).Google Scholar
  7. 7.
    Trauble, H., and Essmann, U., Phys. Status Solid., 25, 373 (1968).CrossRefGoogle Scholar
  8. 8.
    Blasenbrey, S., and Pechhold, W., Ber. Bunsenges. Physik. Chem., 74, 784 (1970).Google Scholar
  9. 9.
    Pechhold, W., and Blasenbrey, S., Kolloid-Z. u. Z. Polymere, 241, 955 (1970).CrossRefGoogle Scholar
  10. 10.
    Nabarro, E.R.N., Theory of Crystal Dislocations, Clarendon Press, Oxford (1967).Google Scholar
  11. 11.
    Schouten, J. A., Ricci-Calculus, Springer, Berlin, Gottingen, Heidelberg (1954).Google Scholar
  12. 12.
    Anthony, K. H., to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • K. H. Anthony
    • 1
  • E. Kröner
    • 1
  1. 1.Institut für Theoretische und Angewandte PhysikUniversität StuttgartStuttgartGermany

Personalised recommendations