Effects of Hydrostatic Pressure on the Deformation and Fracture of Polymers

  • S. V. Radcliffe


Accurate observations under controlled conditions of the effects of increased environmental pressure on the mechanical behavior of polymers are relatively recent. From a critical analysis of these various pressure observations, phenomena that appear to be characteristic of such effects for the major polymer classes are identified, and the validity of hypotheses advanced for particular phenomena in specific polymers, together with their generality, is examined.

For the modulus (i.e., the preyield region of the stress-strain curve), the larger pressure dependence for semicrystalline compared with amorphous glassy polymers is associated with the pressure-induced increase in the temperature of subambient relaxation processes in the disordered component of the structure. In an analogous manner, increases in the glass transition temperature with pressure cause discontinuous increases in modulus for elastomers. For the yield stress, the measured pressure dependence — both from hydrostatic and from biaxial stress experiments — conforms to a modified von Mises yield criterion. However, unlike the modulus, there is no clear differentiation in the behavior of crystalline and amorphous polymers. Although the “volume-change equivalence” hypothesis is found to be invalid, the temperature and pressure dependence of yield stress can be correlated in a manner analogous to the time-temperature superposition concept. Applications of rate theory to the pressure, strain rate, and temperature dependence of yielding appear promising, but have not yet elucidated the specifics of the molecular mechanisms involved in polymer yielding.

The brittle fracture and crazing of amorphous glassy polymers can be suppressed by pressure and shear yielding induced. For polystyrene, there is evidence that this brittle-ductile transition may result from changes in crack-propagation characteristics rather than from simply a suppression of crazing. In some normally ductile polymers, decreases in strain to fracture occur with increases in pressure; such effects appear to be associated with pressure-induced changes in the temperature of relaxation processes.

It is concluded that the development of experimental techniques for studying polymer behavior under pressure has reached the stage where substantial contribution can be made to the elucidation of the factors controlling the mechanical behavior of this class of materials.


Polymethyl Methacrylate Hydrostatic Pressure Pressure Dependence Amorphous Polymer Glassy Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bridgman, P. W., J. Appl. Phys., 24, 560 (1953).CrossRefGoogle Scholar
  2. 2.
    Ainbinder, S. B., Laka, M. G., and Maiors, I. Y., Dokl. Akad. Nauk SSR, 159, 1244 (1964).Google Scholar
  3. 3.
    Paterson, M. S., J. Appl. Phys., 35, 176 (1964).CrossRefGoogle Scholar
  4. 4.
    Holiday, L., Mann, J., Pogany, G. A., Pugh, H.L1.D., and Gun, D. A., Nature, 202, 381 (1964).CrossRefGoogle Scholar
  5. 5.
    Ainbinder, S. B., Laka, M. G., and Maiors, I. Y., Mekh. Polim., 1 (1), 65 (1965);Google Scholar
  6. Ainbinder, S. B., Laka, M. G., and Maiors, I. Y., [Poly. Mech., 1 (1), 50 (1965)].Google Scholar
  7. 6.
    Holliday, L., J. Chem. Ind., p 970 (June 1967).Google Scholar
  8. 7.
    Laka, M. G., and Dzenis, A. A., Mekh. Polim., 6, 1043 (1967).Google Scholar
  9. 8.
    Sardar, D., Radcliffe, S. V., and Baer, E., Polymer Eng. Sci., 8, 290 (1968).CrossRefGoogle Scholar
  10. 9.
    Pae, L. D., Mears, D. R., and Sauer, J. A., J. Polymer Sci., Part B, 6, 773 (1968).Google Scholar
  11. 10.
    Pae, K. D., and Mears, D. R., J. Polymer Sci., Part B, 6, 269 (1968).Google Scholar
  12. 11.
    Ainbinder, S. B., Mekh. Polira, 6, 986 (1968).Google Scholar
  13. 12.
    Biglione, G., Baer, E., and Radcliffe, S. V., Fracture, 1969, (Proc. 2nd Inter. Conf., Bristol, April 1969), P. L. Pratt, et al. (Eds.), Chapman and Hall, London (1969), p 520.Google Scholar
  14. 13.
    Mears, D. R., Pae, K. D., and Sauer, J. A., J. Appl. Phys., 40, 4229 (1969).CrossRefGoogle Scholar
  15. 14.
    Mears, D. R., and Pae, K. D., J. Polymer Sci., Part B, 7, 349 (1969).CrossRefGoogle Scholar
  16. 15.
    Vroom, W. I., and Westover, R. F., Soc. Plastics Engrs. J., 25, 58 (1969).Google Scholar
  17. 16.
    Weaver, C. W., and Paterson, M. S., J. Polymer Sci., Part A-2, 7, 587 (1969).Google Scholar
  18. 17.
    Ainbinder, S. B., Mekh. Polim., 3, 449 (1969).Google Scholar
  19. 18.
    Uy, J. C., McCann, D. R., and Hettwer, P. F., Ocean Eng., 1, 573 (1969).CrossRefGoogle Scholar
  20. 19.
    Sauer, J. A., Mears, D. R., and Pae, K. D., European Polymer J., 6, 1015 (1970).CrossRefGoogle Scholar
  21. 20.
    Rabinowitz, D., Ward, I. M., and Parry, J.S.C., J. Mater. Sci., 5, 29 (1970).CrossRefGoogle Scholar
  22. 21.
    Christiansen, A. W., Baer, E., and Radcliffe, S. V., Phil. Mag., 24, 188 451 (1971).CrossRefGoogle Scholar
  23. 22.
    Pugh, H.D.L1., Chandler, E. F., Holliday, L., and Mann, J., Polymer Eng. Sci., 11, 463 (1971).Google Scholar
  24. 23.
    Davis, L. A., and Pampillo, C. A., J. Appl. Phys., 42, 12, 4659 (1971).Google Scholar
  25. 24.
    Pae, K. D., and Sauer, J. A., Mech. Eng. (in press).Google Scholar
  26. 25.
    Sauer, J. A., Bhateja, S. K., and Pae, K. D., Proc. Third Inter-American Conf. on Materials Technology,Rio de Janeiro, Brazil, 1972 (in press).Google Scholar
  27. 26.
    Duckett, R. A., Rabinowitz, S., and Ward, I. M., J. Mater. Sci., 5, 909 (1970).CrossRefGoogle Scholar
  28. 27.
    Weir, C. E., J. Res. Nat. Bur. Std, 46, 207 (1951).CrossRefGoogle Scholar
  29. 28.
    Robertson, J. A., and Kipsitt, H. A., J. Appl. Phys., 36, 2843 (1965).CrossRefGoogle Scholar
  30. 29.
    Whitney, W., and Andrews, R. D., J. Polymer Sci., 16, 2981 (1967).Google Scholar
  31. 30.
    Sternstein, S. S., and Ongchin, L., Amer. Chem. Soc. (Polymer Preprints), 10, 117 (1969).Google Scholar
  32. 31.
    Bauwens, J. C., J. Polymer Sci., Part A-2, 5, 1145 (1967); Part A-2, 8, 893 (1970).Google Scholar
  33. 32.
    Bowden, P. B., and Jukes, J. A., J. Mater. Sci., 3, 183 (1968); 7, 52 (1972).Google Scholar
  34. 33.
    Sternstein, S. S., Ongchin, L., and Silverman, A., Applied Polymer Symposia, 7, 175 (1968).Google Scholar
  35. 34.
    Radcliffe, S. V., “Pressure-Induced Effects on Defect Structure and Properties”, Chapter 12 in Mechanical Behavior of Materials Under Pressure, H.L1.D. Pugh (Ed.), Elsevier Publishing Company, Ltd., New York (1970).Google Scholar
  36. 35.
    Rauch, G. C., and Leslie, W. C., Metallurgical Trans., 3, 373 (1972).Google Scholar
  37. 36.
    Daga, R., and Radcliffe, S. V., to be published.Google Scholar
  38. 37.
    Robertson, R. E., J. Appl. Polymer Sci., 7, 443 (1963);CrossRefGoogle Scholar
  39. Robertson, R. E., J. Chem. Phys., 44, 3590 (1966).Google Scholar
  40. 38.
    Robertson, R. E., Applied Polymer Symposia, 7, 201 (1968).Google Scholar
  41. 39.
    Argon, A. S., Andrews, R. D., Godrick, J. A., and Whitney, W., J. Appl. Phys., 39, 1899 (1968).CrossRefGoogle Scholar
  42. 40.
    Wu, W., “Plastic Deformation of Polymers”, Doctoral Thesis, Massachusetts Institute of Technology, May, 1972.Google Scholar
  43. 41.
    Vincent, P. I., Polymer, 12, 534 (1971).CrossRefGoogle Scholar
  44. 42.
    Ongchin, L., and Sternstein, S. S., Bull. Amer. Phys. Soc., 14, CK8–CK9 (1969).Google Scholar
  45. 43.
    Sternstein, S. S., and Ho, T. C., J. Appl. Phys. (1972) (in press).Google Scholar
  46. 44.
    Francois, D., and Wilshaw, T. R., J. Appl. Phys., 39, 4170 (1968).CrossRefGoogle Scholar
  47. 45.
    Aladag, E., Pugh, H.L1.D., and Radcliffe, S. V., Acta Met., 17, 1467 (1969).CrossRefGoogle Scholar
  48. 46.
    Bedere, D., Jamard, C., Jarlaud, A., and Francois, D., Acta. Met., 19, 973 (1971).CrossRefGoogle Scholar
  49. 47.
    Boyer, R. F., Polymer Eng. Sci., 8, 101 (1968).CrossRefGoogle Scholar
  50. 48.
    Bauwens-Crowet, C., Bauwens, J-C., and Himes, G., J. Mater. Sci., 7, 176 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • S. V. Radcliffe
    • 1
  1. 1.Case Western Reserve UniversityClevelandUSA

Personalised recommendations