Sedimentation and Gel-Permeation Chromatography of Associating-Dissociating Macromolecules

The Role of Ligand Mediation and Rates of Reaction
  • John R. Cann
Part of the Biological Separations book series (BIOSEP)


Some years ago we reported that in the many applications of zone electrophoresis to biological problems it is imperative that cognizance be taken of the fact that multiple zones need not necessarily indicate inherent heterogeneity. Thus, both theoretical calculations (Cann and Goad, 1965) and experimentation (Cann, 1966) revealed that, under appropriate conditions, a single macromolecule interacting reversibly with an uncharged constituent of the solvent medium can give two zones despite instantaneous establishment of equilibrium. Moreover, a single macromolecule, which isomerizes reversibly at rates comparable to the rate of electrophoretic separation of the isomers, can give three zones. Accordingly, it was emphasized that unequivocal proof of inherent heterogeneity is afforded only by isolation of the various components. Since that time, we have extended these concepts to include the sedimentation and gel-permeation chromatography of ligandmediated associating—dissociating macromolecules and some representative kinetically controlled interactions. A review of these advances and their implications for the separation of proteins and the characterization of biologically important interactions is given below.


Sedimentation Pattern Zone Sedimentation Sedimentation Behavior Spreading Zone Carbamyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackers, G. K. (1969) Adv. Protein Chem. 24: 343.CrossRefGoogle Scholar
  2. Anderson, P. M. and Marvin, S. V. (1970) Biochemistry 9: 171.PubMedCrossRefGoogle Scholar
  3. Cann, J. R. (1966) Biochemistry 5: 1108.PubMedCrossRefGoogle Scholar
  4. Cann, J. R. (1970) Interacting Macromolecules. The Theory and Practice of Their Electrophoresis, Ultracentrifugation and Chromatography, Chapter 4, Academic Press, New York.Google Scholar
  5. Cann, J. R. (1973) Biophys. Chem. 1: 1.CrossRefGoogle Scholar
  6. Cann, J. R. and Goad, W. B. (1965) J. Biol. Chem. 240: 1162.PubMedGoogle Scholar
  7. Cann, J. R. and Goad, W. B. (1970) Science 170: 441.PubMedCrossRefGoogle Scholar
  8. Cann, J. R. and Goad, W. B. (1972) Arch. Biochem. Biophys. 153: 603.PubMedCrossRefGoogle Scholar
  9. Cann J. R. and Kegeles, G. (1974) Biochemistry 13: 1868.PubMedCrossRefGoogle Scholar
  10. Cann, J. R. and Oates, D. C. (1973) Biochemistry 12: 1112.PubMedCrossRefGoogle Scholar
  11. Eisinger, J. and Blumberg, W. E. (1973) Biochemistry 12: 3648.PubMedCrossRefGoogle Scholar
  12. Field, E. O. and O’Brien, J. R. P. (1955) Biochem. 60: 656.Google Scholar
  13. Field, E. O. and Ogston, A. G. (1955) Biochem. J. 60: 661.PubMedGoogle Scholar
  14. Gilbert, G. A. (1955) Discuss. Faraday Soc. 20: 68.Google Scholar
  15. Gilbert, G. A. (1959) Proc. Roy. Soc. Ser. A 250: 377.CrossRefGoogle Scholar
  16. Gilbert, L. M. and Gilbert, G. A. (1973) Meth. Enzymol. D 27: 273.CrossRefGoogle Scholar
  17. Gilbert, W. and Müller-Hill, B. (1966) Proc. Natl. Acad. Sci. U.S.A. 56: 1891.PubMedCrossRefGoogle Scholar
  18. Goad, W. B. (1970) in: InteractingMacromolecules. The Theory and Practice of Their Electrophoresis, Ultracentrifugation, and Chromatography, J. R. Cann, Chapter 5, Academic Press, New York.Google Scholar
  19. Kegeles, G. and Tai, M. (1973) Biophys. Chem. 1: 46.CrossRefGoogle Scholar
  20. Kirkegaard, L. and Agee, C. C. (1973) Proc. Natl. Acad. Sci. U.S.A. 70: 2424.PubMedCrossRefGoogle Scholar
  21. Kumar, S. and Porter, J. W. (1971) J. Biol. Chem. 246: 7780.PubMedGoogle Scholar
  22. Kumar, S., Dorsey, J. A., Muesing, R. A., and Porter, J. W. (1970) J. Biol. Chem. 245: 4732.PubMedGoogle Scholar
  23. Kumar, S., Muesing, R. A., and Porter, J. W. (1972) J. Biol. Chem. 247: 4749.PubMedGoogle Scholar
  24. Martin, R. G. and Ames, B. N. (1961) J. Biol. Chem. 236: 1372.PubMedGoogle Scholar
  25. Morimoto, K. and Kegeles, G. (1971) Arch. Biochem. Biophys. 142: 247.PubMedCrossRefGoogle Scholar
  26. Roberts, W. K. (1972) personal communication.Google Scholar
  27. Shelton, E., Kuff, E. L., Maxwell, E. S., and Harrington, J. T. (1970) J. Cell. Biol. 45: 1.PubMedCrossRefGoogle Scholar
  28. Tai, M.-S. and Kegeles, G. (1971) Arch. Biochem. Biophys. 142: 258.PubMedCrossRefGoogle Scholar
  29. Weirich, C. A., Adams, E. T., Jr., and Barlow, G. H. (1973) Biophys. Chem. 1: 35.CrossRefGoogle Scholar
  30. Weisenberg, R. C. and Timasheff, S. N. (1970) Biochemistry 9: 4110.PubMedCrossRefGoogle Scholar
  31. Zimmerman, J. K. and Ackers, G. K. (1971) J. Biol. Chem. 246: 1078.PubMedGoogle Scholar
  32. Zimmerman, J. K., Cox, D. S., and Ackers, G. K. (1971) J. Biol. Chem. 246: 4242.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • John R. Cann
    • 1
  1. 1.Department of Biophysics and GeneticsUniversity of Colorado Medical CenterDenverUSA

Personalised recommendations