Understanding the Causes of Non-Transferability of EXAFS Amplitude

  • E. A. Stern
  • B. Bunker
  • S. M. Heald


The use of the extended x-ray absorption fine structure (EXAFS) technique has expanded rapidly in recent years.1,2 EXAFS provides information about the local environment of the x-ray absorbing atom. In addition to the interatomic distances r, the mean square deviation, δ 2, of r and the number of atoms, N, at r can be extracted from an EXAFS spectrum. However, in order to extract N and δ 2 the amplitude of the EXAFS spectrum must be calibrated. This has been done using theoretical calculations3 or empirically using known materials as standards,4 but depends critically on the accuracy of transferability from sample to sample. It is the aim of this paper to assess experimentally the accuracy of amplitude transferability and to understand some of the factors that may cause variability.


Center Atom Zincblende Structure Core Hole Passive Electron Inelastic Energy Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Stern, Contemp. Phys. 19, 289 (1978).CrossRefGoogle Scholar
  2. 2.
    P. Eisenberger and B. M. Kincaid, Science 200, 1441 (1978).CrossRefGoogle Scholar
  3. 3.(a)
    B. K. Teo and P. A. Lee, J. Am. Chem. Soc. 101, 2815 (1979);CrossRefGoogle Scholar
  4. 3.(b)
    P. A. Lee and G. Beni, Phys. Rev. 15, 2862 (1977).CrossRefGoogle Scholar
  5. 4.
    E. A. Stern, D. E. Sayers, and F. W. Lytle, Phys. Rev. B11, 4836 (1975).CrossRefGoogle Scholar
  6. 5.
    E. A. Stern, Phys. Rev. B10, 3027 (1974) .CrossRefGoogle Scholar
  7. 6.
    C. A. Ashley and S. Doniach, Phys. Rev. B11, 1279 (1975).Google Scholar
  8. 7.
    E. A. Stern, S. M. Heald, and B. Bunker, Phys. Rev. Lett. 42, 1372 (1979).CrossRefGoogle Scholar
  9. 8.
    J. J. Rehr, E. A. Stern, R. L. Martin and E. R. Davidson, Phys. Rev. B17, 560 (1978).CrossRefGoogle Scholar
  10. 9.
    T. A. Carlson, Photoelectron and Auger Spectroscopy, Plenum, N.Y. (1975).Google Scholar
  11. 10.
    T. A. Carlson and M. V. Krause, Phys. Rev. 140, A1057 (1965);CrossRefGoogle Scholar
  12. 10.(a)
    V. Schmidt, N. Sandner, H. Kuntzemüller, P. Dhez, F. Weilleumier, and E. Källne, Phys. Rev. A13, 1748 (1976);CrossRefGoogle Scholar
  13. 10.(b)
    D. M. P. Holland, K. Codling, J. B. West and G. V. Marr, to be published.Google Scholar
  14. 11.
    T. A. Carlson, J. C. Carver, L. J. Saethre, F. G. Santibaney, and G. A. Vernon, J. of Electron Spect. and Related Phenom. 5, 247 (1974) .CrossRefGoogle Scholar
  15. 12.
    W. H. McMaster, N. Kerr Del Grande, J. H. Mallett, and J. H. Hubell, Compilation of X-ray Cross Sections, National Technical Information Service, Springfield, Ba. (1969).Google Scholar
  16. 13.
    J. J. Rehr, H. Meuth, E. Sevillano, and S.-H. Chou (unpublished).Google Scholar
  17. 14.
    E. Sevillano, H. Meuth, and J. J. Rehr, to be published.Google Scholar
  18. 15.
    E. A. Stern, B. Bunker, and S. M. Heald, Phys. Rev. B21, 5521 (1980).CrossRefGoogle Scholar
  19. 16.
    J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).CrossRefGoogle Scholar
  20. 17.
    P. A. Lee and J. B. Pendry, Phys. Rev. B11, 2795 (1975).CrossRefGoogle Scholar
  21. 18.
    C. J. Powell, Surface Sci. 44, 29 (1974) .CrossRefGoogle Scholar
  22. 19.
    R. F. Pettifer, 4th Eur. Phys. Soc. Gen. Conf., Chap. 7 (1979).Google Scholar
  23. 20.
    S. J. Gurman and J. B. Pendry, Solid State Commun. 20, 287 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • E. A. Stern
    • 1
  • B. Bunker
    • 1
  • S. M. Heald
    • 1
  1. 1.Physics Dept. FM-15University of WashingtonSeattleUSA

Personalised recommendations