Skip to main content

Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy: Techniques and Applications

  • Chapter
Book cover EXAFS Spectroscopy

Abstract

Extended X-ray absorption fine structure (EXAFS) refers to the oscillatory variation of the X-ray absorption as a function of photon energy beyond an absorption edge. The absorption, normally expressed in terms of absorption coefficient (µ), can be determined from a measurement of the attenuation of X-rays upon their passage through a material. When the X-ray photon energy (E) is tuned to the binding energy of some core level of an atom in the material, an abrupt increase in the absorption coefficient, known as the absorption edge, occurs. For isolated atoms, the absorption coefficient decreases monotonically as a function of energy beyond the edge. For atoms either in a molecule or embedded in a condensed phase, the variation of absorption coefficient at energies above the absorption edge displays a complex fine structure called EXAFS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. de L. Kronig, Z. Physik., 70, 317 (1931)

    Article  Google Scholar 

  2. R. de L. Kronig, Z. Physik., 75, 191 (1932)

    Article  Google Scholar 

  3. E. A. Stern, Phys. Rev. B, 10, 3027 (1974);

    Article  Google Scholar 

  4. E. A. Stern, D. E. Sayers, and F. W. Lytle, Phys. Rev. B, 11, 4836 (1975), and references cited therein.

    Article  Google Scholar 

  5. B. M. Kincaid and P. Eisenberger, Phys. Rev. Lett., 34, 1361 (1975);

    Article  Google Scholar 

  6. H. Winick and A. Bienenstock, Ann. Rev. Nucl. Part. Sci., 28, 33 (1978);

    Article  Google Scholar 

  7. I. Lindau and H. Winick, J. Vac. Sci. Tecnol., 15, 977 (1978);

    Article  Google Scholar 

  8. R. E. Watson and M. L. Perlman, Science, 199, 1295 (1978);

    Article  Google Scholar 

  9. B. W. Batterman and N. W. Ashcroft, Science, 206, 157 (1979).

    Article  Google Scholar 

  10. The physics and biological aspects of EXAFS have been reviewed elsewhere by others, see, e.g., (a) E. A. Stern, Contemp. Phys., 19, 289 (1978);

    Article  Google Scholar 

  11. P. Eisenberger and B. M. Kincaid, Science, 200, 1441 (1978);

    Article  Google Scholar 

  12. R. G. Shulman, P. Eisenberger, and B. M. Kincaid, Ann. Rev. Biophys. Bioeng., 7, 559 (1978);

    Article  Google Scholar 

  13. D. R. Sandstrom and F. W. Lytle, Ann. Rev. Phys. Chem., 30, 215 (1979);

    Article  Google Scholar 

  14. S. P. Cramer and K. O. Hodgson, Prog. Inorg. Chem., 25, 1 (1979);

    Article  Google Scholar 

  15. T. M. Hayes, J. Non-Cryst. Solids, 31, 57 (1978);

    Article  Google Scholar 

  16. J. Wong in “Metallic Glasses”, H. J. Guntherodt, Ed., Springer-Verlag, Berlin (1980);

    Google Scholar 

  17. “Synchrotron Radiation Research”, ed. H. Winick and S. Doniach, Plenum, N.Y. (1980);

    Book  Google Scholar 

  18. P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Rev. Mod. Phys., in press.

    Google Scholar 

  19. U. C. Srivastava and H. L. Nigam, Coord. Chem. Rev., 9, 275 (1972–73).

    Article  Google Scholar 

  20. R. G. Shulman, Y. Yafet, P. Eisenberger, & W. E. Blumberg, Proc. Natl. Acad. Sci. U.S.A, 73, 1384 (1976);

    Article  Google Scholar 

  21. F. W. Lytle, P. S. P. Wei, R. B. Greegor, G. H. Via, and J. H. Sinfelt, J. Chem. Phys., 70, 4849 (1979);

    Article  Google Scholar 

  22. L. Powers, W. E. Blumberg, B. Chance, C. H. Barlow, J. S. Leigh, Jr., J. Smith, T. Yonetani, S. Vik, and J. Peisach, Biochim. Biophy. Acta, 546, 520 (1979).

    Article  Google Scholar 

  23. J. Jaklevic, J. A. Kirby, M. P. Klein, A. S. Robertson, G. S. Brown, and P. Eisenberger, Solid State Comm., 23, 679 (1977);

    Article  Google Scholar 

  24. F. S. Goulding, J. M. Jaklevic, and A. C. Thompson, SSRL Report No. 78/04, May 1978;

    Google Scholar 

  25. E. A. Stern and S. M. Heald, Rev. Sci. Instrum., 50, 1579 (1979);

    Article  Google Scholar 

  26. P. H. Citrin, P. Eisenberger, and R. Hewitt, Phys. Rev. Lett., 41, 309 (1978);

    Article  Google Scholar 

  27. J. Stohr, D. Denley, and P. Perfetti, Phys. Rev. B, 18, 4132 (1978);

    Article  Google Scholar 

  28. M. Isaacson, J. Chem. Phys., 56, 1818 (1972);

    Google Scholar 

  29. J. I. Ritsko, S. E. Schnatterly and P. G. Gibbons, Phys. Rev. Lett., 32, 671 (1974);

    Article  Google Scholar 

  30. R. A. Bonham in “Momentum Wave Functions-1976”, American Institute of Physics, New York (1977);

    Google Scholar 

  31. B. M. Kincaid, A. E. Meixner, and P. M. Platzman, Phys. Rev. Lett., 40, 1296 (1978);

    Article  Google Scholar 

  32. D. C. Joy and D. M. Maher, Science 206, 162 (1979).

    Article  Google Scholar 

  33. C. A. Ashley and S. Doniach, Phys. Rev. B, 11, 1279 (1975).

    Article  Google Scholar 

  34. P. A. Lee and G. Beni, Phys. Rev. B, 15, 2862 (1977);

    Article  Google Scholar 

  35. P. A. Lee and J. B. Pendry, ibid. 11, 2795 (1975).

    Article  Google Scholar 

  36. Though simply defined as x = (µ - µ o )/µ o (where μ and µ o are the observed and ‘free atom’ absorption coefficients, respectively), the determination of x (generally termed as ‘background substration’) is by no means straightforward since µ o is generally not known. A general procedure is to approximate µ o by a smooth curve (some polynomial or spline) fitted to μ. In transmission experiments, generally drops off monotonically due primarily to the energy dependence of the ionization chamber efficiency and the absorption due to other atoms. In fluorescence experiments, on the other hand, the baseline rises as a function of energy owing to increasing sample penetration, increased Compton scattering, reduced absorption of the scattering, and other effects.

    Google Scholar 

  37. It should be cautioned that the Debye-Waller factor as determined by EXAFS is different from that implied by conventional crystallography in that it refers to the root-mean-square relative displacement along the bond direction and not the absolute root-mean-square displacement of individual atoms. For the first shell, the motions are significantly correlated whereas for higher shells the correlation is greatly reduced.

    Google Scholar 

  38. S. J. Cyrin, Molecular Vibrations and Mean Square Amplitudes, Elsevier, Amsterdam, 1968, p. 77.

    Google Scholar 

  39. G. Beni and P. M. Platzman, Phys. Rev. B, 14, 1514 (1976).

    Article  Google Scholar 

  40. R. B. Greegor and F. W. Lytle, Phys. Rev. B, 20, 4902 (1979).

    Article  Google Scholar 

  41. E. Sevillano, H. Meuth, and J. J. Rehr, Phys. Rev. B, 20, 4908 (1979).

    Article  Google Scholar 

  42. P. Eisenberger and G. S. Brown, Solid State Commun., 29, 481 (1979) .

    Article  Google Scholar 

  43. T. M. Hayes and J. B. Boyce, Chapter 5 of this book.

    Google Scholar 

  44. T. M. Hayes, J. B. Boyce, and J. L. Beeby, J. Phys. C, 11, 2931 (1978).

    Article  Google Scholar 

  45. E. D. Crozier, Chapter 6 of this book.

    Google Scholar 

  46. E. D. Crozier and A. J. Seary, Can. J. Phys., 58, 1388 (1980).

    Google Scholar 

  47. J. J. Rehr, E. A. Stern, R. L. Martin, and E. R. Davidson, Phys. Rev. B, 17, 560 (1978).

    Article  Google Scholar 

  48. E. A. Stern, B. Bunker, and S. M. Heald, Chapter 4 of this book

    Google Scholar 

  49. E. A. Stern, B. A. Bunker, and S. M. Heald, Phys. Rev. B, 21, 5521 (1980).

    Article  Google Scholar 

  50. P. Eisenberger and B. Lengeler, to be published in Phys. Rev. B (1980).

    Google Scholar 

  51. B. K. Teo, J. Am. Chem. Soc., submitted for publication.

    Google Scholar 

  52. C. J. Powell, Surface Sci., 44, 29 (1974) .

    Article  Google Scholar 

  53. D. R. Penn, Phys. Rev. B, 13, 5248 (1976).

    Article  Google Scholar 

  54. M. P. Seah and W. A. Dench, Surface Inter. Anal., 1, 2 (1979).

    Article  Google Scholar 

  55. Strictly speaking, the single-electron single-scattering theory of EXAFS already includes one particular multiple scattering correction: viz., the backscattering process involving the central atom which gives rise to the 2kr phase factor. In this paper, “multiple scattering” refers to processes involving atoms other than the central atom.

    Google Scholar 

  56. B. K. Teo and P. A. Lee, J. Am. Chem. Soc., 101, 2815 (1979).

    Article  Google Scholar 

  57. P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Phys. Rev. Lett., 36, 1346 (1976);

    Article  Google Scholar 

  58. B. K. Teo, P. A. Lee, A. L. Simons, P. Eisenberger, and B. M. Kincaid, J. Am. Chem. Soc., 99, 3854 (1977);

    Article  Google Scholar 

  59. P. A. Lee, B. K. Teo, and A. L. Simons, J. Am. Chem. Soc., 99, 3856 (1977).

    Article  Google Scholar 

  60. S. P. Cramer, T. K. Eccles, F. Kutzler, K. O. Hodgson, and S. Doniach, J. Am. Chem. Soc., 98, 8059 (1976).

    Article  Google Scholar 

  61. R. G. Shulman, P. Eisenberger, W. E. Blumberg, N. A. Stombaugh, .Proc Nat. Acad. Sci. U.S.A., 72, 4002 (1975).

    Article  Google Scholar 

  62. G. Martens, P. Rabe, N. Schwentner, and A. Werner, Phys. Rev. Lett., 39, 1411 (1977).

    Article  Google Scholar 

  63. P. A. Lee, Chapter 2 of this book.

    Google Scholar 

  64. A. Bienenstock, Chapter 14 of this book.

    Google Scholar 

  65. B. W. Batterman, Chapter 15 of this book.

    Google Scholar 

  66. J. B. Hastings, Chapter 16 of this book.

    Google Scholar 

  67. P. J. Mallozzi, R. E. Schwerzel, H. M. Epstein, and B. E. Campbell, Science, 206, 353 (1979).

    Article  Google Scholar 

  68. G. S. Knapp, H. Chen, T. E. Klippert, Rev. Sci. Instrum., 49, 1658 (1978).

    Article  Google Scholar 

  69. For more detailed discussions on S/N of various EXAFS techniques, see Ref. 41.

    Google Scholar 

  70. J. B. Hastings, P. Eisenberger, B. Lengeler, and M. L. Perlman, Phys. Rev. Lett., 43, 1807 (1979).

    Article  Google Scholar 

  71. M. Marcus, L. S. Powers, A. R. Storm, B. M. Kincaid, and B. Chance, Rev. Sci. Instrum., 51, 1023 (1980).

    Article  Google Scholar 

  72. See Chapters 17–21 of this book.

    Google Scholar 

  73. R. D. Leapman and V. E. Cosslet, J. Phys. D, 9, 25 (1976) .

    Article  Google Scholar 

  74. P. E. Batson and A. J. Craven, Phys. Rev. Lett., 42, 893 (1979).

    Article  Google Scholar 

  75. For an excellent review, see R. H. Holm, Acc. Chem. Res., 10, 427 (1977).

    Article  Google Scholar 

  76. R. G. Shulman, P. Eisenberger, B. K. Teo, B. M. Kincaid, and G. S. Brown, J. Mol. Biol., 124, 305 (1978), and references cited therein.

    Article  Google Scholar 

  77. B. K. Teo, R. G. Shulman, G. S. Brown, and A. E. Meixner, J. Am. Chem. Soc., 101, 5624 (1979) .

    Article  Google Scholar 

  78. K. D. Watenbaugh, L. C. Sieker, J. R. Herriot, and L. H. Jensen, Acta Crystallogr. B, 29, 943 (1973).

    Article  Google Scholar 

  79. B. Bunker and E. A. Stern, Biophys. J., 19, 253 (1977);

    Article  Google Scholar 

  80. D. E. Sayers, E. A. Stern, and J. R. Herriott, J. Chem. Phys., 64, 427 (1976).

    Article  Google Scholar 

  81. P. Eisenberger, R. G. Shulman, G. S. Brown, and S. Ogawa, Proc. Natl. Acad. Sci., U.S.A., 73, 491 (1976); (b) P. Eisenberger, R. G. Shulman, B. M. Kincaid, G. S. Brown, and S. Ogawa, Nature (London), 274, 30 (1978).

    Article  Google Scholar 

  82. P. Eisenberger, R. G. Shulman, B. M. Kincaid, G. S. Brown, and S. Ogawa, Nature (London), 274, 30 (1978).

    Article  Google Scholar 

  83. J. L. Hoard, Science, 174, 1295 (1971);

    Article  Google Scholar 

  84. M. F. Perutz, Nature (London), 228, 726 (1970).

    Article  Google Scholar 

  85. G. S. Brown, G. Navon, and R. G. Shulman, . Proc Natl. Acad. Sci., U.S.A., 74, 1794 (1977).

    Article  Google Scholar 

  86. S. M. Heald, E. A. Stern, B. Bunker, E. M. Holt, and S. L. Holt, J. Am. Chem. Soc., 101, 67 (1979).

    Article  Google Scholar 

  87. J. M. Brown, L. Powers, B. Kincaid, J. A. Larrabee, and T. G. Spiro, J. Am. Chem. Soc. 102, 4210 (1980) .

    Article  Google Scholar 

  88. T. E. Wolff, J. M. Berg, C. Warrick, K. O. Hodgson, R. H. Holm, and R. B. Frankel, J. Am. Chem. Soc., 100, 4630 (1978);

    Article  Google Scholar 

  89. S. P. Cramer, K. O. Hodgson, W. O. Gillum, and L. E. Mortenson, J. Am. Chem. Soc., 100, 3398 (1978);

    Article  Google Scholar 

  90. S. P. Cramer, W. O. Gillum, K. O. Hodgson, L. E. Mortenson, E. I. Stiefel, J. R. Chisnell, W. J. Brill, and V. K. Shah, J. Am. Chem. Soc., 100, 3814 (1978).

    Article  Google Scholar 

  91. T. E. Wolff, J. M. Berg, C. Warrick, K. O. Hodgson, and R. H. Holm, J. Am. C. S., 100, 4630 (1978);

    Article  Google Scholar 

  92. T. E. Wolff, J. M. Berg, K. O. Hodgson, R. B. Frankel, and R. H. Holm, J. Am. C. S., 101, 4140 (1979);

    Article  Google Scholar 

  93. G. Christou, C. D. Garner, F. E. Mabbs and T. J. King, J. C. S. Chem. Commun., 740 (1978);

    Google Scholar 

  94. G. Christou, C. D. Garner, F. E. Mabbs, and M. G. B. Drew, ibid., 91 (1979);

    Google Scholar 

  95. S. R. Acott, G. Christou, C. D. Garner, T. J. King, F. E. Mabbs, and R. M. Miller, Inorg. Chim. Acta., 35, L337 (1979);

    Article  Google Scholar 

  96. T. E. Wolff, J. M. Berg, P. P. Power, K. O. Hodgson, R. H. Holm, and R. B. Frankel, J. C. S. Chem. Commun., 101, 5454 (1979);

    Google Scholar 

  97. D. Coucouvanis, N. C. Baenziger, E. D. Simhon, P. Stremple, D. Swenson, A. Simopoulos, A. Kostikas, V. Petrouleas, and V. Papaefthymiou, J. Am. Chem. Soc., 102, 1732 (1980).

    Article  Google Scholar 

  98. B. K. Teo and B. A. Averill, Biochem. Biophys. Res. Commun., 88, 1454 (1979);

    Article  Google Scholar 

  99. R. H. Tieckelmann, H. C. Silvis, T. A. Kent, B. H. Huynh, J. V. Waszczak, B. K. Teo, and B. A. Averill, J. Am. Chem. Soc., 102, 5550 (1980);

    Article  Google Scholar 

  100. C. D. Stout, D. Ghosh, V. Pattabhi, and A. Robbins, J. Biol. Chem., 255, 1797 (1980);

    Google Scholar 

  101. Fujian Institute of Research on the Structure of Matter (PRC), private communication.

    Google Scholar 

  102. L. Powers, P. Eisenberger, and J. Stamatoff, Ann. N.Y. Acad. Sci., 307, 113 (1978).

    Article  Google Scholar 

  103. S. P. Cramer, J. H. Dawson, K. O. Hodgson, and L. P. Hager, J. Am. Chem. Soc., 100, 7282 (1978).

    Article  Google Scholar 

  104. V. W. Hu, S. I. Chan, and G. S. Brown,. Proc Natl. Acad. Sci. U.S.A., 74, 3821 (1977).

    Article  Google Scholar 

  105. T. Tullius, P. Frank, and K. O. Hodgson. Proc Natl. Acad. Sci. U.S.A., 75, 4069 (1978).

    Article  Google Scholar 

  106. For example, SSRL Publication List; SSRL Reports 78/10, 79/03, 79/10, 80/01, etc.

    Google Scholar 

  107. B. K. Teo, K. Kijima, and R. Bau. J. Am. Chem. Soc., 100, 621 (1978)

    Article  Google Scholar 

  108. B. K. Teo, P. Eisenberger, J. Reed, J. K. Barton, S. J. Lippard, J. Am. Chem. Soc., 100, 3225 (1978), and references cited therein.

    Article  Google Scholar 

  109. B. K. Teo, P. Eisenberger, and B. M. Kincaid, J. Am. Chem. Soc., 100, 1735 (1978).

    Article  Google Scholar 

  110. A. Michalowicz, J. J. Girerd, and J. Goulon, Inorg. Chem., 18, 3004 (1979).

    Article  Google Scholar 

  111. M. Verdaguer, A. Michalowicz, J. J. Girerd, N. Alberding, and O. Kahn, Inorg. Chem., 19, 3271 (1980).

    Article  Google Scholar 

  112. G. Martens, P. Rabe, N. Schwentner, and A. Werner, Phys. Rev. B, 17, 1481 (1978).

    Article  Google Scholar 

  113. H. S. Chen, B. K. Teo, and R. Wang, Abst. 4th Inter. Conf. Liq. Amor. Metals, Grenoble, France, July 7–11, 1980;

    Google Scholar 

  114. J. Wong, F. W. Lytle, R. B. Greegor, H. H. Liebermann, J. L. Walter, and F. E. Luborsky, Proc. 3rd Inter. Conf. Rapid. Quench. Metals, Sessex University, Vol. II, 1978, p. 345;

    Google Scholar 

  115. T. M. Hayes, J. W. Allen, J. Tauc, B. C. Giessen, and J. J. Hauser, Phys. Rev. Lett., 40, 1282 (1978);

    Article  Google Scholar 

  116. E. A. Stern, S. Rinaldi, E. Callen, S. Heald, and B. Bunker, J. Mag. Mater., 7, 188 (1978).

    Article  Google Scholar 

  117. G. S. Brown, L. R. Testardi, J. H. Wernick, A. B. Hallak, and T. H. Geballe, Solid State Commun., 23, 875 (1977).

    Article  Google Scholar 

  118. J. B. Boyce and T. M. Hayes in Chapter 2 of Physics of Superionic Conductors, ed. M. B. Salamon, Vol. 15 of Topics in Current Physics, Springer-Verlag, Berlin (1979).

    Google Scholar 

  119. S. H. Hunter, A. Bienenstock, and T. M. Hayes, in The Structure of NonCrystalline Materials, ed. P. H. Gaskell, Taylor and Francis, London, 1977, p. 73;

    Google Scholar 

  120. S. H. Hunter, A. Bienenstock, and T. M. Hayes, in Amorphous and Liquid Semiconductors, ed. W. E. Spear, Univ. Edinburgh, Edinburgh, 1977, p. 78.

    Google Scholar 

  121. P. Eisenberger and B. M. Kincaid, Chem. Phys. Lett., 36, 134 (1975);

    Article  Google Scholar 

  122. D. R. Sandstrom, H. W. Dodgen and F. W. Lytle, J. Chem. Phys., 67, 473 (1977);

    Article  Google Scholar 

  123. D. R. Sandstrom, J. Chem. Phys., 71, 2381 (1979).

    Article  Google Scholar 

  124. E. D. Grozier, F. W. Lytle, D. E. Sayers, and E. A. Stern, Can J. Chem., 55, 1968 (1977);

    Article  Google Scholar 

  125. J. Wong and F. W. Lytle, J. Non-Cryst. Solid., 37, 273 (1980).

    Article  Google Scholar 

  126. E. D. Crozier and A. J. Seary, Can. J. Phys., 58, 1388 (1980).

    Google Scholar 

  127. See Chapters 7 to 12 of this book.

    Google Scholar 

  128. J. Reed, P. Eisenberger, B. K. Teo, and B. M. Kincaid, J. Am. Chem. Soc., 100, 2375 (1978);

    Article  Google Scholar 

  129. J. Reed, P. Eisenberger, B. K. Teo, and B. M. Kincaid, J. Am. Chem. Soc., 99, 5217 (1977).

    Article  Google Scholar 

  130. J. H. Sinfelt, G. H. Via, and F. W. Lytle, J. Chem. Phys., 68, 2009 (1978);

    Article  Google Scholar 

  131. F. W. Lytle, NBS Spec. Publ. U.S.A., 475, 34 (1977);

    Google Scholar 

  132. I. Bassi, F. W. Lytle, and G. Parravano, J. Catal., 42, 139 (1976);

    Article  Google Scholar 

  133. G. H. Via, J. H. Sinfelt, F. W. Lytle, J. Chem. Phys., 71, 690 (1979);

    Article  Google Scholar 

  134. J. H. Sinfelt, G. H. Via, and F. W. Lytle, J. Chem. Phys., 72, 4832 (1980);

    Article  Google Scholar 

  135. Ref 6c.

    Google Scholar 

  136. G. H. Via, J. H. Sinfelt, and F. W. Lytle, Chapter 10 of this book.

    Google Scholar 

  137. S. M. Heald and E. A. Stern, Phys. Rev. B, 16, 5549 (1977);

    Article  Google Scholar 

  138. L. I. Johansson and J. Stohr, Phys. Rev. Lett., 43, 1882 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Teo, BK. (1981). Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy: Techniques and Applications. In: Teo, B.K., Joy, D.C. (eds) EXAFS Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1238-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1238-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1240-7

  • Online ISBN: 978-1-4757-1238-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics