ras Oncogenes pp 235-241 | Cite as

Molecular Interactions of p21

  • Patrick D. Bailey
  • G. W. Guthrie Montgomery


The intrinsic GTPase activity of the p21 proteins appears to be central to the control of the transduction of cellular signalling across the cell membrane. Oncogenic p21 species that have reduced GTP hydrolysis have been studied to investigate if hydrolysis correlates with an increase in transforming potential, as the GTP-bound enzyme represents the active state of the complex1,2. The isolation of cytoplasmic cellular extracts containing GTPase activating protein (GAP) has clarified this relationship, indicating that in vivo the level of the active GTP-bound complex will result from both the intrinsic hydrolysis of the p21 protein and that induced by the ability of the GAP protein to recognise and stimulate the p21 molecule.3


GTPase Activity GTPase Activate Protein Sodium Cholate EMBO Journal Intrinsic GTPase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lacal, J.C., Srivastava, S.K., Anderson, P.S. & Aaronson, S.A. (1986) Cell 44, 609–617.PubMedCrossRefGoogle Scholar
  2. 2.
    Gibbs, J.B., Sigal, I.S., Poe, M. & Scolnick, E.M. (1984) Proc. Natl. Acad. Sci. U.S.A. B1, 5704–5708.CrossRefGoogle Scholar
  3. 3.
    Vogel, U.S., Dixon, A.F., Schaber, M.D., Diehl, R.E., Marshall, M.S., Scolnick E.M., Sigal I.S. & Gibbs, J.B. (1988) Nature 335, 90–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Trahey, M. & McCormick, F. (1987) Science 238, 542–545.PubMedCrossRefGoogle Scholar
  5. 5.
    Cales, C., Hancock, J.F., Marshall, C.J. & Hall, A. (1988) Nature 332, 548–551.PubMedCrossRefGoogle Scholar
  6. 6.
    Gibbs, J.B., Schaber, M.D., Allard, W.J., Sigal, I.S. & Scolnick, E.M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5026–5030.PubMedCrossRefGoogle Scholar
  7. 7.
    Neer, E.J. & Clapham, D.E. (1988) Nature 333, 129–134.PubMedCrossRefGoogle Scholar
  8. 8.
    Willumsen, B. M., Christensen, A., Hubbert, N.L., Papageorge, A.G. & Lowy, D.R. (1984) Nature 310, 583–586.PubMedCrossRefGoogle Scholar
  9. 9.
    Willumsen, B.M., Norris, K., Papageorge, A.G., Hubbert, N.L. & Lowy, D.R. (1984) EMBO Journal 3, 2581–2585.PubMedGoogle Scholar
  10. 10.
    TIBS — 12th December 1987 — Letters pp 461–462.Google Scholar
  11. 11.
    Montgomery, G.W.G. & Gooday, G.W. (1985) FEMS Microbiol. Lett. 27, 29–33.CrossRefGoogle Scholar
  12. 12.
    Hesketh, T.R., Smith, G.A., Houslay, M.D., McGill, K.A., Birdsall, M.J.M., Metcalfe, J.C. & Warren, G.B. (1976) Biochemistry 15, 4145–4151.PubMedCrossRefGoogle Scholar
  13. 13.
    Montgomery, G.W.G., Jagger, B.A. & Bailey, P.D. (1988) Biochemistry 27, 4391–4395.PubMedCrossRefGoogle Scholar
  14. 14.
    Tucker, J., Sczakiel, G., Feuerstein, J., John, J., Goody, R.S. & Wittinghofer, A. (1986) EMBO Journal 5, 1351–1358.PubMedGoogle Scholar
  15. 15.
    Spandidos, D.A. & Dimitrov, T. (1985) Bioscience Reports 5, 1035–1039.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Patrick D. Bailey
    • 1
  • G. W. Guthrie Montgomery
    • 1
  1. 1.Department of ChemistryUniversity of YorkYorkEngland

Personalised recommendations