ras Oncogenes pp 225-233 | Cite as

Post-Translational Modification of ras Proteins: Palmitoylation and Phosphorylation of Yeast ras Proteins

  • Fuyuhiko Tamanoi
  • Alexander R. Cobitz
  • Asao Fujiyama
  • Laurie E. Goodman
  • Charles Perou


The ras-genes are conserved during evolution and appear to play an essential role in the growth regulation of cells. Products of these genes are localized in the plasma membrane1,2 and exhibit well-defined biochemical activities to bind guanine nucleotides and hydrolyze GTP3–6. Because a large amount of the purified proteins can be obtained after their expression in E. coli, extensive structural studies have been carried out. The protein has been crystalized and its three dimensional structure has been determined7. Furthermore, recent identification of the GAP protein8–10 raises the possibility that protein-protein interactions involving the ras protein can be elucidated in biochemical terms.


Palmitic Acid Adenylate Cyclase Precursor Form Murine Sarcoma Virus Activate cAMP Dependent Protein Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. C. Willingham, I. Pastan, T. Y. Shih and E. M. Scolnick, Localization of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by Electron Microscopic Immunocytochemistry. Cell 19:1005 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    T. Y. Shih, M. O. Weeks, P. Gruss, R. Dhar, S. Oroszlan and E.M. Scolnick, Identification of a precursor in the biosynthesis of the p21 transforming protein of Harvey murine sarcoma virus. J. Virol. 42:253 (1982).PubMedGoogle Scholar
  3. 3.
    E. M. Scolnick, A. G. Papageorge and T. Y. Shih, Guanine nucleotide binding activity as an assay for the src protein of rat-derived murine sarcoma viruses. Proc. Natl. Acad. Sci. USA 76 : 5355 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    J. P. McGrath, D. J. Capon, D. V. Goeddel and A. D. Levinson, Comparative biochemical properties of normal and activated human ras p21 protein. Nature 310: 644 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    R. W. Sweet, S. Yokoyama, T. Kamata, J. R. Feramisco, M. Rosenburg and M. Gross, The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity. Nature 311:273 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    J. B. Gibbs, I. S. Sigal, M. Poe and E. M. Scolnick, Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules . Proc. Natl. Acad. Sci. USA 81:5704 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    A. M. DeVos, L. Tong, M. V. Milburn, P. M. Matias, J. Jancarik, S. Noguchi, S. Nishimura, K. Miura, E. Ohtsuka and S-H Kim, Threedimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. Science 239: 888 (1988).CrossRefGoogle Scholar
  8. 8.
    M. Trahey and F. McCormick, A cytoplasmic protein stimulates normal Nras p21 GTPase, but does not affect oncogenic mutants. Science 238:542 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    U. S. Vogel, R. A. F. Dixon, M. D. Schaber, R. E. Diehl, M. S. Marshall, E. M. Scolnick, I. S. Sigal and J. B. Gibbs, Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335: 90 (1988 ).PubMedCrossRefGoogle Scholar
  10. 10.
    C. Cales, J. F. Hancock, C. J. Marshall and A. Hall, The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature 332:548 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    D. DeFeo-Jones, E. M. Scolnick, R. Koller, and R. Dhar, ras-related gene sequences identified and isolated from Saccharomyces cerevisiae, Nature 306:707 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Powers, T. Kataoka, O. Fasano, M. Goldfarb, J. Strathern, J. Broach and M. Wigler, Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36: 607 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    F. Tamanoi, M. Walsh, T. Kataoka and M. Wigler, A product of yeast RAS2 gene is a guanine nucleotide binding protein. Proc. Natl. Acad. Sci. USA 81:6924 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Fujiyama, N. Samiy, M. Rao and F. Tamanoi, Biochemistry of yeast RAS1 and RAS2 proteins. in “Yeast Cell Biol.” J. Hicks ed., Alan R. Liss, New York (1986) p125.Google Scholar
  15. 15.
    G. L. Temeles, J. B. Gibbs, J. S. D’Alonzo, I. S. Sigal and E. M. Scolnick, Yeast and mammalian ras proteins have conserved biochemical properties. Nature 313:700 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    T. Toda, I. Uno, T. Ishikawa, S. Powers, T. Kataoka, D. Broek, J. Broach, K. Matsumoto and M. Wigler, In RAS proteins are controlling elements of the cyclic AMP pathway. Cell 40:27 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    D. Broek, N. Samiy, O. Fasano, A. Fujiyama, F. Tamanoi, J. Northup and M. Wigler, Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell 41:763 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    B. M. Sefton, I. S. Trowbridge, J. A. Cooper and E. M. Scolnick, The transforming proteins of Rous sarcoma virus and Abelson virus contain tightly bound lipid. Cell 31:465 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    J. E. Buss and B. M. Sefton, Direct identification of palmitic acid as the lipid attached to p21 ras. Mol. Cell. Biol. 6:116 (1986).PubMedGoogle Scholar
  20. 20.
    B. Willumsen, A. Christiansen, N. L. Hubbert, A. G. Papageorge and D. Lowy, The p21 ras C-terminus is required for transformation and membrane association, Nature (London), 311:583 (1984).CrossRefGoogle Scholar
  21. 21.
    M. O. Weeks, G. L. Hager, R. Lowe and E. M. Scolnick, Development and analysis of a transformation-defective mutant of Harvey murine sarcoma tk virus and its gene product, J. Virol. 54:586 (1985).PubMedGoogle Scholar
  22. 22.
    A. Magee and M. Hanley, Sticky fingers and CAAX boxes, Nature 335:114 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Fujiyama and F. Tamanoi, Processing and fatty acid acylation of RAS1 and RAS2 proteins in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 83:1266 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Fujiyama, K. Matsumoto and F. Tamanoi, A novel yeast mutant defective in the processing of ras proteins: assessment of the effect of the mutation on processing steps, EMBO J. 6:223 (1987).PubMedGoogle Scholar
  25. 25.
    F. Tamanoi, E. C. Hsueh, L. E. Goodman, A. R. Cobitz, R.J. Detrick, W. R. Brown and A. Fujiyama, Posttranslational modification of as proteins: Detection of a modification prior to fatty acidacylation and cloning of a gene responsible for the modification, J. Cell. Biochem. 36:261 (1988).PubMedCrossRefGoogle Scholar
  26. 26.
    R. J. Deschenes and J. R. Broach, Fatty acylation is important but not essential for Saccharomyces cerevisiae RAS function, Mol. Cell. Biol. 7, 2344 (1987).PubMedGoogle Scholar
  27. 27.
    S. Clarke, J. P. Vogel, R. J. Deschenes and J. Stock, Posttranslational modification of the Ha-ras oncogene protein: Evidence or a third class of protein carboxyl methyltransferases, Proc. Natl. Acad. Sci. USA 85:4643 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    L. E. Goodman, C. M. Perou, A. Fujiyama and F. Tamanoi, Structure and expression of yeast DPR1, a gene essential for the processing and intracellular localization of ras proteins, Yeast in press.Google Scholar
  29. 29.
    S. Powers, S. Michaelis, D. Broek, A. S. Santa-Anna, J. Field, I. Herskowitz and M. Wigler, RAM, a gene of yeast required for a functional modification of RAS proteins and for production of mating pheromone a-factor. Cell 47:413 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    K. L. Wilson and I. Herskowitz., STE16, a new gene required for pheromone production by a cells of Saccharomyces cerevisiae. Genetics 155:441 (1987).Google Scholar
  31. 31.
    A. J. Brake, C. Brenner, R. Najarian, P. Laybourn and J. Merryweather, Structure of genes encoding precursors of yeast peptide mating pheromone a-factor. in “Protein transport and secretion”, M. J. Gething ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1985) p103.Google Scholar
  32. 32.
    R. Betz, J. W. Crabb, H. E. Meyer, R. Wittig and W. Duntze, Amino acid sequences of a-factor mating peptides from Saccharomyces cerevisiae. J. Biol. Chem. 262:546 (1987).PubMedGoogle Scholar
  33. 33.
    . J. Nikawa, S. Cameron, T. Toda, K. M. Ferguson and M. Wigler, Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae. Genes & Develop. 1: 931 (1987).CrossRefGoogle Scholar
  34. 34.
    R. J. Resnick and E. Racker, Phosphorylation of the RAS2 gene product by protein kinase A inhibits the activation of yeast adenylate cyclase. Proc. Natl. Acad. Sci. USA, 85:2474 (1988).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Papageorge, D. Lowy and E. M. Scolnick, Comparative biochemical properties of p21 ras molecules coded for by viral and cellular ras genes. J. Virol. 44:509 (1982).PubMedGoogle Scholar
  36. 36.
    R. Ballester, M. E. Furth and O. M. Rosen, Phorbol ester- and protein kinase c-mediated phosphorylation of the cellular Kirsten ras gene product. J. Biol. Chem. 262:2688 (1987).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Fuyuhiko Tamanoi
    • 1
  • Alexander R. Cobitz
    • 1
  • Asao Fujiyama
  • Laurie E. Goodman
    • 1
  • Charles Perou
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoUSA

Personalised recommendations