ras Oncogenes pp 105-118 | Cite as

Ras Proteins as Potential Activators of Protein Kinase C Function

  • Janet E. Jones
  • Juan Carlos Lacal


The structural and functional relationships of the products of the ras genes with known G proteins have suggested that ras-p21 s may be important mediators of signal transduction pathways involved in cellular proliferation and differentiation. One of the best characterized pathways constitutes the activation of the Ca++sensitive, phospholipid dependent protein kinase C (PKC), following receptor mediated hydrolysis of inositol phospholipids by phospholipase C (PLC). We have investigated the putative involvement of the ras-p21 proteins in the modulation of PLC, responsible for the generation of 1,2-diacylglycerol (DAG) and inositol phosphates (IPs), as well as the consequent activation of PKC by the generated DAG. Utilizing Xenopus laevis oocytes we have detected a rapid increase in the generation of DAG after microinjection of the transforming H-ras p21 protein. Elevated basal levels of DAG were also observed in NIH-3T3 cells transformed by a variety of mutated ras proteins without increased levels of the corresponding IPs. These results suggest a novel source for the generated DAG other than the hydrolysis of phosphatidyl inositol phosphates. We have also observed that microinjection of mutated ras proteins into cells previously devoided of endogenous PKC by chronic treatment with phorbol esters, lacked its otherwise potent mitogenic activity. The mitogenic function of ras-p21 was regenerated under identical conditions by co-microinjection with PKC . These results suggest the requirement of functional PKC for the mitogenic activity of ras. Finally, our previous findings that microinjection of ras-p21 into 3T3 cells induces a rapid increase in the intracellular pH of 0.15–0.2 pH units (Hagag et al. 1987) demonstrate the ras-p21 can induce the activation of PKC under normal conditions. Taken together, all these results imply that ras-p21 proteins may function as regulators of PKC activity.


Phorbol Ester Mitogenic Activity Xenopus Laevis Oocyte Phospholipid Dependent Protein Kinase Methyl Thymidine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harvey, J.J. (1964). Nature 204: 1104–1105.PubMedCrossRefGoogle Scholar
  2. 2.
    Kirsten, W.H. and Mayer, L.A. (1967) J. Natl. Cancer Inst. 39:311–334.PubMedGoogle Scholar
  3. 3.
    Shih, T.Y., Weeks, M.O., Young, H.A., and Scolnick, E.M.(1979) Virology 96: 64–79.PubMedCrossRefGoogle Scholar
  4. 4.
    Scolnick, E.M., Papageorge, A.G., Stokes, P.E., and Shih, T.Y. (1979) Proc. Natl. Acad. Sci. USA 76: 5355–5359.PubMedCrossRefGoogle Scholar
  5. 5.
    Shih, T.Y., Papageorge, A.G., Stokes, P.E., Weeks, M.O., and Scolnick, E.M. (1980). Nature 287: 686–691.PubMedCrossRefGoogle Scholar
  6. 6.
    Willingham, M.C., Pastanm, I., Shih, T.Y., and Scolnick, E.M.(1980) Cell 19: 1005–1014.PubMedCrossRefGoogle Scholar
  7. 7.
    Barbacid, M. (1987) Ann. Rev. Bioch. 56: 779–827.CrossRefGoogle Scholar
  8. 8.
    Lacal, J.C., and Tronick, S.E. (1988) The ras oncogene. In The Oncogene Handbook. Reddy, P., Curran, T, and Skalka, A. edts. Elsvier, Holland.Google Scholar
  9. 9.
    Bos, J.L. et al. (1985) Nature 315:726–730.PubMedCrossRefGoogle Scholar
  10. 10.
    Reynolds, S. et al (1987) Science 237:1309–1316.PubMedCrossRefGoogle Scholar
  11. 11.
    McGrath, J.P., Capon, D.J., Goeddel, D.V., and Levinson, A.D. (1984) Nature 310: 644–649.PubMedCrossRefGoogle Scholar
  12. 12.
    Gibbs, J.B., Sigal, I.S., Poe, M., and Scolnick, E.M. (1984) Proc. Natl. Acad. Sci. USA 81: 5704–5708.PubMedCrossRefGoogle Scholar
  13. 13.
    Sweet, R.W., Yokoyama, S., Kamata, T., Feramisco, J.R., Rosenberg, M., and Gross, M. (1984) Nature 311: 273–275.PubMedCrossRefGoogle Scholar
  14. 14.
    Trahey, M., and McCormick, F. (1987) Science 238: 542–545.PubMedCrossRefGoogle Scholar
  15. 15.
    Adari, H., Lowy, D.R., Willumsen, B.M., Der, C.J., and McCormick, F. (1988) Science 240: 518–521.PubMedCrossRefGoogle Scholar
  16. 16.
    Calés, C., Hancock, J., Marshall, C.J., and Hall, A. (1988) Nature 332: 548–551.PubMedCrossRefGoogle Scholar
  17. 17.
    Di Donato, A., Srivastava, S.K., and Lacal, J.C. (1988) In “The guanine-nucleotides binding proteins:common structural and func-tional properties”. Bosch, L., Kraal , B., and Parmeggiani, A. Plenum Publishing Co. (in the press).Google Scholar
  18. 18.
    Berridge, M.J., and Irvine, R.F. (1984) Nature 312: 315–319PubMedCrossRefGoogle Scholar
  19. 19.
    Gilman, A.G. (1984) Cell 36: 577–579.PubMedCrossRefGoogle Scholar
  20. 20.
    Stryer, L. (1986) Ann. Rev. Neurosc. 9: 787–819.CrossRefGoogle Scholar
  21. 21.
    Ochoa, S. (1986) Arch. Biochem. Biophys. 223: 325–349.CrossRefGoogle Scholar
  22. 22.
    Berridge, M.J. (1984) Biochem. J. 220: 345-PubMedGoogle Scholar
  23. 23.
    Cockcroft, S, and Gowperts, B.D. (1985) Nature 314:534–536.PubMedCrossRefGoogle Scholar
  24. 24.
    Melin, P., Sundler, R., and Jergil, B. (1986) FEBS Lett. 198:85–88.PubMedCrossRefGoogle Scholar
  25. 25.
    Smith, C.D., Cox, C.C., and Snyderman, R. (1986) Science 232:97–100.PubMedCrossRefGoogle Scholar
  26. 26.
    Uhing, R.J., Prpic, V., Jiang, H, and Exton, J.H. (1986) J. Biol. Chem. 261:2140–2146.PubMedGoogle Scholar
  27. 27.
    Stacey, D.W. and Kung, H. (1984) Nature 310:508–511.PubMedCrossRefGoogle Scholar
  28. 28.
    Bar-Sagi, D., and Feramisco, J. (1985) Cell 42:841–848.PubMedCrossRefGoogle Scholar
  29. 29.
    Birchmeier, C., Broek, D., and Wigler, M. (1985) Cell 43:615–621.PubMedCrossRefGoogle Scholar
  30. 30.
    Lacal, J.C. et al (1986) Cell 44:609–617.PubMedCrossRefGoogle Scholar
  31. 31.
    Willumsen, B.M. et al (1984) Nature 310:583–586.PubMedCrossRefGoogle Scholar
  32. 32.
    Garber, E.A. et al (1983) Nature 302:161–163.PubMedCrossRefGoogle Scholar
  33. 33.
    Rozengurt, E. (1986) Science 234:161–166.PubMedCrossRefGoogle Scholar
  34. 34.
    Nishizuka, Y. (1986) Science 233:305–312.PubMedCrossRefGoogle Scholar
  35. 35.
    Noda, M. et al. (1985) Nature 318: 73–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Hall, F.L. et al. (1988) J. Biol. Chem. 263: 4460–4466.PubMedGoogle Scholar
  37. 37.
    Muir, J.G. and Murray, A.W. (1987) J. Cell Physiol. 130: 382–391.PubMedCrossRefGoogle Scholar
  38. 38.
    Kolesnick, R.N. (1987) J. Biol. Chem. 262: 14525–14530.PubMedGoogle Scholar
  39. 39.
    Glatz, J.A. et al. (1987) Carcinogenesis 8: 1943–1945.PubMedCrossRefGoogle Scholar
  40. 40.
    Shuldiner, S., and Rozengurt, E. (1982) Proc. Natl. Acad. Sci.USA 79:7778–7782.CrossRefGoogle Scholar
  41. 41.
    Pouyssegur, J (1985) Trends Biochem. Sci. 10:453–455.CrossRefGoogle Scholar
  42. 42.
    Hagag, N. et al (1987) Mol. Cell. Biol.7, 1984–1988.PubMedGoogle Scholar
  43. 43.
    Mulcahy, L.S., Smith, M.R., and Stacey, D.W. (1985) Nature 313: 241–243.PubMedCrossRefGoogle Scholar
  44. 44.
    Yu, C., Tsai, M., and Stacey, D.W. (1988) Cell 52: 63–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Dolto, G.P., Parada, L.F., and Weinberg, R.A. (1985) Nature 318: 472–475.CrossRefGoogle Scholar
  46. 46.
    Knopf, J.L. et al. (1986) Cell 46: 491–502.PubMedCrossRefGoogle Scholar
  47. 47.
    Coussens, L. et al. (1986) Science 233: 859–866.PubMedCrossRefGoogle Scholar
  48. 48.
    Parker, P.J. et al. (1986) Science 233: 853–858.PubMedCrossRefGoogle Scholar
  49. 49.
    Ono, Y. et al. (1987) FEBS Lett. 226: 125–128.PubMedCrossRefGoogle Scholar
  50. 50.
    Huang, K., Nakabayashi, H., and Huang, F.L. (1986) Proc. Natl. Acad. Sci. USA 83: 8535–8539.PubMedCrossRefGoogle Scholar
  51. 51.
    Jaken, S., and Kiley, S.C. (1987) Proc. Natl. Acad. Sci. USA 84: 4418 – 4422.PubMedCrossRefGoogle Scholar
  52. 52.
    Brandt, S.J. et al. (1987) 49:57–63.Google Scholar
  53. 53.
    Yoshida, Y. et al. (1988) J. Biol. Chem. 263: 9868–9873.PubMedGoogle Scholar
  54. 54.
    Ohno, S. et al. (1987) Nature 325: 161–164.PubMedCrossRefGoogle Scholar
  55. 55.
    Hidaka, H. et al. (1988) J. Biol. Chem. 263: 4523–4526.PubMedGoogle Scholar
  56. 56.
    Huang K. et al (1986) Proc. Natl. Acad. Sci. USA 83: 8535–8539.PubMedCrossRefGoogle Scholar
  57. 57.
    Ono, Y. et al (1988) J. Biol. Chem. 263: 6927–6932.PubMedGoogle Scholar
  58. 58.
    Housey, G.M. et al. (1988) Cell 52: 343–354.PubMedCrossRefGoogle Scholar
  59. 59.
    Persons, D.A. et al. (1988) Cell 52: 477–458.CrossRefGoogle Scholar
  60. 60.
    M. Zasloff (1983) Proc. Natl. Acad, Sci. USA 80: 6436–6440CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Janet E. Jones
    • 1
  • Juan Carlos Lacal
    • 1
  1. 1.Laboratory of Cellular and Molecular BiologyNational Cancer InstituteBethesdaUSA

Personalised recommendations