The Effects of the Volatile Anesthetic Agents on the Heart

  • Margaret G. Pratila
  • Vasilios Pratilas
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 34)


It took only just over a year after William Morton showed the feasibility of surgical anesthesia to demonstrate the marked effects of volatile anesthetic agents on the heart. On 28 January 1848, Hannah Greener, aged 15, was the first patient to die during chloroform anesthesia (presumably of ventricular fibrillation).


Myocardial Blood Flow Coronary Blood Flow Halothane Anesthesia Purkinje Fiber Slow Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hauswirth O, Schaer H: Effects of halothane on the sinoatrial node. J. Pharmacol Exp Therap 158: 3639, 1967.Google Scholar
  2. 2.
    Reynolds AK, Chiz JF, Pasquet AF: Halothane and methoxyflurane: a comparison of their effects on cardiac pacemaker fibers. Anesthesiology 33: 602–610, 1970.PubMedCrossRefGoogle Scholar
  3. 3.
    Maylie J, Morad M, Weiss J: A study of pacemaker potential in rabbit sino-atrial node: measurement of potassium activity under voltage-clamp conditions. J Physiol 311: 161–178, 1981.PubMedGoogle Scholar
  4. 4.
    Kampine JP, Bosnjak ZJ, Turner LA: Effects of halothane on SA node: role of calcium. Anesthesiology 55: A58, 1981.Google Scholar
  5. 5.
    Lynch C, Vogel S, Sperelakis N: Halothane depression of myocardial slow action potentials. Anesthesiology 55: 360–368, 1981.PubMedCrossRefGoogle Scholar
  6. 6.
    Merlos JR, Bosnjak ZJ, Purlock RV, Turner LA, Kampine JR: Halothane and enflurane effects on SA node cells. Anesthesiology 53: 5143, 1980.CrossRefGoogle Scholar
  7. 7.
    Hauswirth O: Effects of halothane on single atrial, ventricular, and Purkinje fibers. Circ Res 24: 745750, 1969.Google Scholar
  8. 8.
    Reynolds AK, Chiz JF, Pasquet AF: Pacemaker migration and sinus node arrest with methoxyflurane and halothane. Can Anaesth Soc J 18: 137–144, 1971.PubMedCrossRefGoogle Scholar
  9. 9.
    Pratila MG, Vogel S, Sperelakis N: Effects of enflurane on rabbit atrium. Unpublished data.Google Scholar
  10. 10.
    Scherlag BJ, Helfant RH, Damato AN: A catheterization technique for His-bundle stimulation and recording in intact dog. J Appl Physiol 25: 425428, 1968.Google Scholar
  11. 11.
    Damato AN, Lau SH, Bobb GA, Wit AL: Recording of AV nodal activity in the intact dog heart. Am Heart J 80: 353–366, 1970.PubMedCrossRefGoogle Scholar
  12. 12.
    Narula OS, Scherlag BJ, Samet P, Javier RP: Atrioventricular block: localization and classification by His-bundle recordings. Am J Med 50: 146–165, 1971.PubMedCrossRefGoogle Scholar
  13. 13.
    Kastor JA: Atrioventricular block. N Engl J Med 292:462–465, 572–574, 1975.Google Scholar
  14. 14.
    Atlee JL, Rusy BF: Halothane depression of A-V conduction studied by electrograms of the bundle of His in dogs. Anesthesiology 36: 112–118, 1972.PubMedCrossRefGoogle Scholar
  15. 15.
    Atlee JL, Alexander SC: Halothane effects on conductivity of the AV node and His Purkinje system in the dog. Anesth Analg (Cleve) 56: 378–386, 1977.Google Scholar
  16. 16.
    Atlee JL, Homer LD, Tober RE: Diphenylhydanwin and lidocaine modification of AV conduction in halothane anesthetized dogs. Anesthesiology 43: 49–60, 1975.PubMedCrossRefGoogle Scholar
  17. 17.
    Atlee JL III, Houge JC, Malkinson CE: Halothane and AV conduction: awake vs anesthesia. Anesthesiology 55: A53, 1981.CrossRefGoogle Scholar
  18. 18.
    Hantler CB, Kroll DA, Tait AR, Knight PR: Cardiac effects of halothane with spinal anesthesia. Anesthesiology 55: A4, 1981.Google Scholar
  19. 19.
    Morrow DH, Haley JV, Logic JR: Anesthesia and digitalis. VII. The effect of pentobarbital halothane and methoxyflurane on the AV conduction and inotropic responses to ouabain. Anesth Analg (Cleve) 51: 430–438, 1972.Google Scholar
  20. 20.
    Jacques A, Hudon F: Effect of epinephrine on the human heart during methoxyflurane anesthesia. Can Anaesth Soc J 10: 53, 1963.PubMedCrossRefGoogle Scholar
  21. 21.
    Atlee JR III, Rusy BF: Atrioventricular conduction times and atrioventricular nodal conductivity during enflurane anesthesia in dogs. Anesthesiology 47: 498–503, 1977.PubMedCrossRefGoogle Scholar
  22. 22.
    Atlee JL, Rusy BF, Kreul JF: Supraventricular excitability in dogs during anesthesia with halothane and enflurane. Anesthesiology 49: 407–413, 1978.PubMedCrossRefGoogle Scholar
  23. 23.
    Zaidon JR, Curling PE, Kaplan JA: Effect of enflurane on pacing threshold. Anesthesiology 55: A59, 1981.Google Scholar
  24. 24.
    Blitt CD, Raessler KL, Wightman MA, Groves BM, Wall CL, Geha DG: Atrioventricular conduction in dogs during anesthesia with isoflurane. Anesthesiology 50: 210–212, 1979.PubMedCrossRefGoogle Scholar
  25. 25.
    Pruett JK, Mote PS, Grover TE, Augeri JM: Enflurane and halothane effects on cardiac Purkinje fibers. Anesthesiology 55: A65, 1981.Google Scholar
  26. 26.
    Chen C, Gettes LS, Katzung BG: Effect of lidocaine and quinidine on steady-state characteristics and recovery kinetics of (dV/dt)„., in guinea pig ventricular myocardium. Circ Res 37: 20–29, 1975.PubMedCrossRefGoogle Scholar
  27. 27.
    Hashimoto K, Endoh M, Kimura T: Effects of halothane on automaticity and contractile force of isolated blood-perfused canine ventricular tissue. Anesthesiology 42: 15–25, 1975.PubMedCrossRefGoogle Scholar
  28. 28.
    Logic JR, Morrow DH: The effect of halothane on ventricular automaticity. Anesthesiology 36: 107118, 1972.Google Scholar
  29. 29.
    Lynch C, Vogel S, Pratila MG, Sperelakis N: Enflurane depression of myocardial slow action potentials. J Pharmacol Exp Ther 222: 405–409, 1982.Google Scholar
  30. 30.
    Vassalle M: Electrogenesis of the plateau and pacemaker potential. Am Rev Physiol 41: 425–440, 1979.CrossRefGoogle Scholar
  31. 31.
    Lappas DC, Buckley MJ, Laver MB, Daggett WM, Lowenstein E: Left ventricular performance and pulmonary circulation following addition of nitrous oxide to morphine during coronary-artery surgery. Anesthesiology 43: 61–69, 1975.PubMedCrossRefGoogle Scholar
  32. 32.
    Delaney TJ, Kistner JR, Lake CL, Miller ED Jr: Myocardial function during halothane and enflurane anesthesia in patients with coronary artery disease. Anesth Analg (Cleve) 59: 240–244, 1980.Google Scholar
  33. 33.
    Stevens WC, Cromwell TH, Halsey MJ, Eger EI II, Shakespeare TF, Bahlman SH: The cardiovascular effects of a new inhalational anesthetic, Forane, in human volunteers at constant arterial carbon dioxide tension. Anesthesiology 35: 8–16, 1971.PubMedCrossRefGoogle Scholar
  34. 34.
    Rathod R, Jacobs HK, Kramer NE, Rao TLK, Salem MR, Towne WD: Echocardiographic assessment of ventricular performance following induction with two anesthetics. Anesthesiology 49: 8690, 1978.CrossRefGoogle Scholar
  35. 35.
    Kaplan JA, Miller ED, Bailey DR: A comparative study of enflurane and halothane using systolic time intervals. Anesth Analg (Cleve) 55: 263–268, 1976.Google Scholar
  36. 36.
    Smith NT, Calverley RK, Prys-Roberts C, Eger EI II, Jones CW: Impact nitrous oxide on the circulation during enflurane anesthesia in man. Anesthesiology 48: 345–349, 1978.PubMedCrossRefGoogle Scholar
  37. 37.
    Merin RG, Kumazawa T, Luka NL: Myocardial function and metabolism in the conscious dog and during halothane anesthesia. Anesthesiology 44: 402–415, 1976.PubMedCrossRefGoogle Scholar
  38. 38.
    Kemmotsu O, Hashimoto Y, Shimosato S: Inotropic effects of isoflurane on mechanics of contraction in isolated cat papillary muscles from normal and failing hearts. Anesthesiology 39: 470–477, 1973.PubMedCrossRefGoogle Scholar
  39. 39.
    Kemmotsu O, Hashimoto Y, Shimosato S: The effects of fluroxene and enflurane on contractile performance of isolated papillary muscles from failing hearts. Anesthesiology 40: 252–260, 1974.PubMedCrossRefGoogle Scholar
  40. 40.
    Ritzman RJ, Erickson HH, Miller ED: Cardiovascular effects of enflurane and halothane in the rhesus monkey. Anesth Analg (Cleve) 55: 85–91, 1976.Google Scholar
  41. 41.
    Merin RG, Kumazawa T, Luka NL: Enflurane depresses myocardial function perfusion and metabolism in the dog. Anesthesiology 45: 501–507, 1976.PubMedCrossRefGoogle Scholar
  42. 42.
    Brown BR, Crout JR: A comparative study of the effects of five general anesthetics on myocardial contractility. Anesthesiology 34: 236–245, 1971.PubMedCrossRefGoogle Scholar
  43. 43.
    Seeman P: The membrane expansion theory of anesthesia. In: Fink BR (ed) molecular mechanisms of anesthesia. Progress in anesthesiology, vol 1. New York: Raven, 1975, pp 243–252.Google Scholar
  44. 44.
    Halsey MJ: Structure-activity relationships of inhalational anesthetics. In: Halsey MJ, Millar RA, Sutton JA (eds) Molecular mechanisms in general anesthesia. Edinburgh: Churchill Livingstone, 1974, pp 3–16.Google Scholar
  45. 45.
    Halsey MJ, Brown FF, Richards RE: Perturbations of model protein systems as a basis for the central and peripheral mechanisms of general anaesthesia. Molecular interactions and activity in proteins, Ciba Foundation Symposium 60. Amsterdam: Excerpta Medica, 1978.Google Scholar
  46. 46.
    Woodbury JW, d’Arrigo JS, Eyring H: Molecular mechanism of general anesthesia lipoprotein conformation change theory. In: Fink BR (ed) Molecular mechanisms of anesthesia. Progress in anesthesiology, vol 1. New York: Raven, 1975, pp 253–276.Google Scholar
  47. 47.
    Metcalfe JC, Hoult JRS, Colley CM: The molecular implications of a unitary hypothesis of anesthetic action. In: Halsey MJ, Millar RA, Sutton JA (eds) Molecular mechanisms in General Anaesthesia. Edinburgh: Churchill Livingstone, 1974, pp 145–163.Google Scholar
  48. 48.
    Cheng SC, Brunner EA: Is anesthesia caused by excess GABA? In: Fink BR (ed) Molecular mechanisms of anesthesia. Progress in anesthesiology, vol 2, New York: Raven, 1980, pp 137–144.Google Scholar
  49. 49.
    Trudell JR: A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology 46: 5–10, 1977.PubMedCrossRefGoogle Scholar
  50. 50.
    Rosenberg PH, Eibl H, Stier A. Biphasic effects of halothane on phospholipid and synaptic plasma membranes: a spin label study. Mol Pharmacol 11: 879–882, 1975.PubMedGoogle Scholar
  51. 51.
    Pang KY, Chang TL, Miller KW: On the coupling between anesthetic induced membrane fluidization and cation permeability in lipid vesicles. Mol Pharmacol 15: 729–738, 1979.PubMedGoogle Scholar
  52. 52.
    Mastrangelo CJ, Trudell JR, Edmunds HN, Cohen EN: Effect of clinical concentrations of halothane on phospholipid membrane fluidity. Mol Pharmacol 14: 463–467, 1978.PubMedGoogle Scholar
  53. 53.
    Menn RG: Inhalational anesthetics and myocardial metabolism: possible mechanism of functional effects. Anesthesiology 34: 236–245, 1971.CrossRefGoogle Scholar
  54. 54.
    Lain RF, Hess ML, Gertz EW, Briggs FN: Calcium uptake activity of canine myocardial sarcoplasmic reticulum in the presence of anesthetic agents. Circ Res 23: 597–604, 1968.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee SL, Alto LE, Dhalla NS: Subcellular effects of some anesthetic agents on rat myocardium. Can J Physiol Pharmacol 57: 65–70, 1974.CrossRefGoogle Scholar
  56. 56.
    Su JY, Kerrick WGL: Effects of halothane on Ca++-activated tension development in mechanically disrupted rabbit myocardial fibers. Pflugers Archiv 375: 111–117, 1978.PubMedCrossRefGoogle Scholar
  57. 57.
    Su JY, Kerrick WGL: Effects of halothane on caffeine-induced tension transients in functionally skinned myocardial fibers. Pflugers Archiv 380: 2934, 1979.Google Scholar
  58. 58.
    Su JY, Kerrick WGL: Effects of enflurane on functionally skinned myocardial fibers from rabbits. Anesthesiology 52: 385–389, 1980.PubMedCrossRefGoogle Scholar
  59. 59.
    Price HL, Ohnishi ST: Effects of anesthetics on the heart. Fed Proc 39: 1575–1579, 1980.PubMedGoogle Scholar
  60. 60.
    Ohnishi ST, Di Camillo Ca, Singer M, Price HL: Correlation between halothane-induced myocardial depression and decreases in Lai+-displaceable Ca2+ in cardiac muscle cells. J Cardiovasc Pharmacol 2: 67–75, 1980.PubMedCrossRefGoogle Scholar
  61. 61.
    Blanck TJJ, Thompson M: Calcium transport by cardiac sarcoplasmic reticulum: modulation of halothane action by substrate concentration and pH. Anesth Analg (Cleve) 60: 390–394, 1981.Google Scholar
  62. 62.
    Conahan TJ, Blanck TJJ: Sarcoplasmic reticulum: enflurane effect on Ca++ dynamics. Anesthesiology 51: S146, 1979.CrossRefGoogle Scholar
  63. 63.
    Blanck TJJ, Thompson M: Enflurane and isoflurane stimulate calcium transport by cardiac sarcoplasmic reticulum. Anesth Analg (Cleve) 61: 142–145, 1982.Google Scholar
  64. 64.
    Komai H, Rusy BF: Effect of halothane on rested-state and potentiated-state contractions in rabbit papillary muscle: relationship to negative inotropic actions. Anesth Analg (Cleve) 61: 403–409, 1982.Google Scholar
  65. 65.
    Weidmann S: Heart: electrophysiology. Annu Rev Physiol 36: 155–169, 1974.PubMedCrossRefGoogle Scholar
  66. 66.
    Shigenobu K, Schneider JA, Sperelakis N: Blockade of slow Na+ and Ca++ currents in myocardial cells by verapamil. J Pharmacol Exp Ther 190: 280–288, 1974.PubMedGoogle Scholar
  67. 67.
    Fabiato A, Fabiato F: Calcium and cardiac excitation-contraction coupling. Annu Rev Physiol 41: 473–484, 1979.PubMedCrossRefGoogle Scholar
  68. 68.
    Await CH, Frederickson EL: The contractile and cell membrane effects of halothane. Anesthesiology 25: 90, 1964.CrossRefGoogle Scholar
  69. 69.
    Lynch C, Vogel S, Pratila MG, Sperelakis N: Methoxyflurane depression of myocardial slow action potentials. Unpublished findings.Google Scholar
  70. 70.
    Shigenobu K, Sperelakis N: Calcium current channels enduced by catecholamines in chick embryonic hearts whose fast Na+ channels are blocked by TTX or elevated K. Circ Res 31: 932–952, 1972.PubMedCrossRefGoogle Scholar
  71. 71.
    Reuter H, Scholz H: A study of the ion selectivity and kinetic properties of the calcium-dependent slow inward current in cardiac muscle. J Physiol (Lond) 264: 17–47, 1977.Google Scholar
  72. 72.
    Watanabe AM, Besch HR Jr: Cyclic adenosine monophosphate modulation of slow Ca+ + influx channels in guinea pig hearts. Circ Res 35: 316324, 1974.Google Scholar
  73. 73.
    Sperelakis N, Schneider JA: A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Am J Cardiol 37: 1079–1085, 1976.PubMedCrossRefGoogle Scholar
  74. 74.
    Reuter H, Scholz H: The regulation of the calcium conductance of cardiac muscle by adrenalin. J Physiol (Lond) 264: 49–62, 1977.Google Scholar
  75. 75.
    Kass RS, Siegelbaum SA, Tsien RW: Three-microelectrode voltage clamp experiments in calf Purkinje fibers: is slow inward current adequately measured? J Physiol (Lond) 290: 201–225, 1979.Google Scholar
  76. 76.
    Morrow DH, Townley NT: Anesthesia and digitalis toxicity: an experimental study. Anesth Analg (Cleve) 43: 510–519, 1964.Google Scholar
  77. 77.
    Reynolds AK, Home ML: Studies on the cardiotoxicity of ouabain. Can J Physiol Pharmacol 47: 165170, 1969.Google Scholar
  78. 78.
    Morrow DH, Knapp DE, Logic JR: Anesthesia and digitalis toxicity. V. Effect of the vagus on ouabaininduced ventricular automaticity during halothane. Anesth Analg (Cleve) 49: 23–27, 1970.Google Scholar
  79. 79.
    Damato AN, Lau SH, Bobb GA: Digitalis-induced bundle-branch ventricular tachycardia studied by electrode catheter recordings of the specialized conducting tissues of the dog. Circ Res 28: 16–22, 1971.PubMedCrossRefGoogle Scholar
  80. 80.
    Logic JR, Morrow DH: The effect of halothane on ventricular automaticity. Anesthesiology 36: 107118, 1972.Google Scholar
  81. 81.
    Matsui H, Schwartz A: Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta 151: 655–663, 1968.PubMedCrossRefGoogle Scholar
  82. 82.
    Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA: The influence of calcium on sodium efflux in squid axons. J Physiol (Lond) 200: 431–458, 1969.Google Scholar
  83. 83.
    Pruett JK, Gramling ZW: Halothane enhanced membrane responsiveness in canine Purkinje fibers. Fed Proc 38: 589, 1979.Google Scholar
  84. 84.
    Ivankovich AD, Miletich DJ, Grossman RK, Albrecht RF, El-Etr AA, Cairoli VJ: The effect of enflurane, isoflurane, fluroxene, methoxyflurane and diethyl ether anesthesia on ouabain tolerance in the dog. Anesth Analg (Cleve) 55: 360–365, 1976.Google Scholar
  85. 85.
    Pearle DL, Gillis RA: Effect of digitalis on response of the ventricular pacemaker to sympathetic neural stimulation and to isoproterenol. Am J Cardiol 34: 704–710, 1974.PubMedCrossRefGoogle Scholar
  86. 86.
    Skovsted P, Price ML, Price HL: The effects of carbon dioxide on preganglionic sympathetic activity during halothane, methoxyflurane and cyclopropane anesthesia. Anesthesiology 37: 70–75, 1972.PubMedCrossRefGoogle Scholar
  87. 87.
    Brown FF III, Owens WD, Felts JA, Spitznagel EL Jr, Cryer PE: Plasma epinephrine and norepinephrine levels during anesthesia: enflurane-N20–02 compound with fentanyl-N20–02. Anesth Analg (Cleve) 61: 366–370, 1982.Google Scholar
  88. 88.
    Skovsted P, Sapthavichaikul S: The effects of isoflurane on arterial pressure, pulse rate, autonomic nervous activity and barostatic reflexes. Can Anaesth Soc J 24: 304–314, 1977.PubMedCrossRefGoogle Scholar
  89. 89.
    Hashimoto K, Hashimoto K: The mechanism of sensitization of the ventricle to epinephrine by halothane. Am Heart J 83: 652–658, 1972.PubMedCrossRefGoogle Scholar
  90. 90.
    Hashimoto K, Endoh M, Kimura T: Effects of halothane on automaticity and contractile force of isolated blood-perfused canine ventricular tissue. Anesthesiology 42: 15–25, 1975.PubMedCrossRefGoogle Scholar
  91. 91.
    Zink J, Sasyniuk BI, Dresel PE: Halothane-epinephrine induced cardiac arrhythmias and the role of heart rate. Anesthesiology 43: 548–555, 1975.PubMedCrossRefGoogle Scholar
  92. 92.
    Singer DH, Lazzara R, Hoffman BF: Electrophysiological effects of canine peripheral A-V conducting system. Circ Res 26: 361–378, 1970.CrossRefGoogle Scholar
  93. 93.
    Reynolds AK, Chiz JF: Epinephrine-potentiated slowing of conduction in Purkinje fibers. Res Commun Chem Pathol Pharmacol 9: 633–642, 1974.PubMedGoogle Scholar
  94. 94.
    Joas TA, Stevens WC: Comparison of the arrhythmic doses of epinephrine during Forane, halo-thane and fluroxene anesthesia in dogs. Anesthesiology 35: 48–53, 1971.PubMedCrossRefGoogle Scholar
  95. 95.
    Johnston RR, Eger EI II, Wilson C: A comparative interaction of epinephrine with enflurane, isoflurane and halothane in man. Anesth Analg (Cleve) 55: 709–712, 1976.Google Scholar
  96. 96.
    Horrigan RW, Eger EI II, Wilson C: Epinephrine-induced arrhythmias during enflurane anesthesia in man: a non-linear dose-response relationship and dose-dependent protection from lidocaine. Anesth Analg (Cleve) 57: 547–550, 1970.Google Scholar
  97. 97.
    Singh BN, Ellrodt G, Peter GT: Verapamil: a review of its pharmacological properties and therapeutic use. Drugs 15: 169–197, 1978.PubMedCrossRefGoogle Scholar
  98. 98.
    Brichard G, Zimmerman PE: Verapamil in cardiac dysrhythmias during anesthesia. Br J Anaesth 42: 1005–1012, 1970.PubMedCrossRefGoogle Scholar
  99. 99.
    Bayer R, Kalusche D, Kaufmann R, Mannhold R: Inotropic and electrophysiological actions of verapamil and D600 in myocardium. III. Effects of the optical isomers on transmembrane action potentials. Naunyn Schmiedebergs Arch Pharmacol 290: 8197, 1975.Google Scholar
  100. 100.
    Merin RG: Slow channel inhibitors, anesthetics and cardiovascular function. Anesthesiology 55: 198200, 1981.Google Scholar
  101. 101.
    Kapur PA, Flacke WE: Epinephrine-induced arrhythmias and cardiovascular function after verapamil during halothane anesthesia in the dog. Anesthesiology 55: 218–225, 1981.PubMedCrossRefGoogle Scholar
  102. 102.
    Kapur PA, Flacke WE, Olewine SK, Van Etten PA: Cardiovascular and catecholamine responses to verapamil during enflurane anesthesia. Anesthesiology 55: A14, 1981.CrossRefGoogle Scholar
  103. 103.
    Kapur PA, Flacke WE, Olewine SK: Comparison of effects of isoflurane versus enflurane on cardiovascular and catecholamine responses to verapamil in dogs. Anesth Analg (Cleve) 61: 193–194, 1982.Google Scholar
  104. 104.
    Kates RA, Kaplan JA, Hug CC, Guyton R, Dorsey LM: Hemodynamic interactions of verapamil and isoflurane in dogs. Anesth Analg (Cleve) 61: 194–195, 1982.Google Scholar
  105. 105.
    Ellrodt G, Chew CYC, Singh BN: Therapeutic implications of slow-channel blockade in cardio-circulatory disorders. Circulation 62: 669–679, 1980.PubMedCrossRefGoogle Scholar
  106. 106.
    Braunwald E: Control of myocardial oxygen con sumption. Am J Cardiol 27: 416–432, 1971.PubMedCrossRefGoogle Scholar
  107. 107.
    Smith NT: Myocardial function and anaesthesia. In: Prys-Roberts (ed) The circulation in anaesthesia. Oxford: Blackwell Scientific, 1980, pp 59–60.Google Scholar
  108. 108.
    Shimosato S: Isovolumic intraventricular pressure change: an index of myocardial contractility during anesthesia. Anesthesiology 31: 327–333, 1969.PubMedCrossRefGoogle Scholar
  109. 109.
    Pollack GH: Isovolumic intraventricular pressure. Anesthesiology 32: 381–383, 1970.PubMedCrossRefGoogle Scholar
  110. 110.
    Mason DT, Braunwald E, Covell JW, Sonnenblick EH, Ross J Jr: Assessment of cardiac contractility: the relation between the rate of pressure rise and ventricular pressure during isovolumic systole. Circulation 44: 47–58, 1971.PubMedCrossRefGoogle Scholar
  111. 111.
    Prys-Roberts C, Gersh BJ, Baker AB, Reuben SR: The effects of halothane on the interactions between myocardial contractility, aortic impedance and left ventricular performance. I. Theoretical considerations and results. Br J Anaesth 44: 634–639, 1972.PubMedCrossRefGoogle Scholar
  112. 112.
    Nelson RR, Gobel FL, Jorgensen CR, Wang K, Wang Y, Taylor HL: Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation 50: 1179–1189, 1974.PubMedCrossRefGoogle Scholar
  113. 113.
    Gobel FL, Nordstrom LA, Nelson RR, Jorgensen CR, Wang Y: Rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation 57: 549556, 1978.Google Scholar
  114. 114.
    Roy WL, Edelist G, Gilbert B: Myocardial ischemia during non-cardiac surgical procedures in patients with coronary-artery disease. Anesthesiology 51: 393–397, 1979.PubMedCrossRefGoogle Scholar
  115. 115.
    Sonntag H: Actions of anesthetics on the coronary circulation in normal subjects and patients with ischemic heart disease. Int Anesthesiol Clin 18: 111–135, 1980.PubMedCrossRefGoogle Scholar
  116. 116.
    Brandi G, McGregor M: Intramural pressure in the left ventricle of the dog. Cardiovasc Res 3: 47 2475, 1969.Google Scholar
  117. 117.
    Hoffman JIE: Determinants and prediction of trans-mural myocardial perfusion. Circulation 58: 38 1391, 1978.Google Scholar
  118. 118.
    Cohen MV, Kirk ES: Differential response of large and small coronary arteries to nitroglycerin and angiotensin: autoregulation and tachyphylaxis. Circ Res 33: 445–453, 1973.PubMedCrossRefGoogle Scholar
  119. 119.
    Braunwald E, Ross J Jr, Sonnenblick EH: Regulation of coronary blood flow: mechanisms of contraction of the normal and failing heart, 2nd edn. Boston: Little Brown, 1976, pp 200–231.Google Scholar
  120. 120.
    Vatner SF, Franklin D, Braunwald E: Effects of anesthesia and sleep on circulatory response to carotid sinus nerve stimulation. Am J Physiol 220: 1249–1255, 1971.PubMedGoogle Scholar
  121. 121.
    Berne RM: Effect of epinephrine and nor-epinephrine on coronary circulation. Circ Res 6: 644–655, 1958.PubMedCrossRefGoogle Scholar
  122. 122.
    Hardin RA, Scott JB, Haddy FJ: Effect of epinephrine and norepinephrine on coronary vascular resistance in dogs. Am J Physiol 201: 276–280, 1961.PubMedGoogle Scholar
  123. 123.
    Hackett JG, Abboud FM, Mark AL, Schmid PG, Heistad DD: Coronary vascular responses to stimulation of chemoreceptors and baroreceptors: evidence for reflex activation of vagal cholinergic innervation. Circ Res 31: 8–17, 1972.PubMedCrossRefGoogle Scholar
  124. 124.
    Vatner SF, Higgins CB, Braunwald E: Effects of norepinephrine on coronary circulation and left ventricular dynamics in the conscious dog. Circ Res 34: 812–823, 1974.PubMedCrossRefGoogle Scholar
  125. 125.
    Pitt B, Elliot EC, Gregg DE: Adrenergic receptor activity in the coronary arteries of the unanesthetized dog. Circ Res 21: 75–84, 1967.PubMedCrossRefGoogle Scholar
  126. 126.
    Klocke FJ, Ellis AK, Orlick AE: Sympathetic influences on coronary perfusion and evolving concepts of driving pressure, resistance and transmural flow regulation. Anesthesiology 52: 1–5, 1980.PubMedCrossRefGoogle Scholar
  127. 127.
    Eberlein HJ: Der Einfluss von Anästhetika auf das Koronargefässsystem. Wien Z Inn Med 46: 400403, 1965.Google Scholar
  128. 128.
    Saito T, Wakisaka K, Yudate T: Coronary and systemic circulation during (inhalation) anesthesia in dogs. Far East J Anesth 5: 105–111, 1966.Google Scholar
  129. 129.
    Weaver PC: Study of the cardiovascular effects of halothane. Ann R Coll Surg Engl 49: 114–136, 1971.PubMedGoogle Scholar
  130. 130.
    Kumazawa T, Merin RG: Effects of inhalation anesthetics on cardiac function and metabolism in the intact dog. Recent Adv Cardiac Struct Metab 10: 71–79, 1975.Google Scholar
  131. 131.
    Douglas WR: Of pigs and men and research: a review of applications and analogies of the pig Sus scrofa, in human medical research. Space Life Sci 3: 226–234, 1972.PubMedGoogle Scholar
  132. 132.
    Merin RG, Verdouw PD, De Jong JW: Dose-dependent depression of cardiac function and metabolism by halothane in swine (Sus scrofa). Anesthesiology 46: 417–423, 1977.PubMedCrossRefGoogle Scholar
  133. 133.
    Wolff G, Claudi B, Rist M, Wardak MR, Niederer W, Graedel E: Regulation of coronary blood flow during ether and halothane anaesthesia. Br J Anaesth 44: 1139–1149, 1972.PubMedCrossRefGoogle Scholar
  134. 134.
    Domenech RJ, Macho P, Valdes J, Penna M: Coronary vascular resistance during halothane anesthesia. Anesthesiology 46: 236–240, 1977.PubMedCrossRefGoogle Scholar
  135. 135.
    Sawyer DC, Ely SW, Korthuis RJ, Scott JB: Effects of halothane in right coronary circulation in the dog. Anesth Analg (Cleve) 59: 559, 1980.Google Scholar
  136. 136.
    Sawyer DC, Ely SW, Scott JB: Halothane and ethrane effects on the coronary circulation. Anesthesiology 53: S129, 1980.CrossRefGoogle Scholar
  137. 137.
    Verrier ED, Edelist G, Consigny PM, Robinson S, Hoffman JIE: Greater coronary vascular reserve in dogs anesthetized with halothane. Anesthesiology 53: 445–459, 1980.PubMedCrossRefGoogle Scholar
  138. 138.
    Muggenburg BA, Mauderly JL: Cardiopulmonary function of awake, sedated and anesthetized beagle dogs. J Appl Physiol 37: 152–157, 1974.PubMedGoogle Scholar
  139. 139.
    Vatner SP, Smith NT: Effects of halothane on left ventricular function and distribution of regional blood flow in dogs and primates. Circ Res 34: 155167, 1974.Google Scholar
  140. 140.
    Sonntag H, Merin RG, Donath U, Radke J, Schenk HD: Myocardial metabolism and oxygenation in man awake and during halothane anesthesia. Anesthesiology 51: 204–210, 1979.PubMedCrossRefGoogle Scholar
  141. 141.
    Bland JHL, Lowenstein EL: Halothane-induced decrease in experimental myocardial ischemia in the non-failing canine heart. Anesthesiology 45: 287293, 1976.Google Scholar
  142. 142.
    Smith G, Rogers K, Thorburn J: Halothane improves the balance of oxygen supply to demand in acute experimental myocardial ischemia. Br J Anaesth 52: 577–583, 1980.PubMedCrossRefGoogle Scholar
  143. 143.
    Klassen GA, Bramwell RS, Bromage PR: Effect of acute sympathectomy by epidural anesthesia on the canine coronary circulation. Anesthesiology 52: 815, 1980.CrossRefGoogle Scholar
  144. 144.
    Merin RC: Is anesthesia beneficial for the ischemic heart? Anesthesiology 53: 439–440, 1980.PubMedCrossRefGoogle Scholar
  145. 145.
    Prys-Roberts C, Roberts JG, Foex P, Clarke TNS, Bennett MJ, Ryder WA: Interaction of anesthesia, betareceptor blockade and blood loss in dogs with induced myocardial infarction. Anesthesiology 45: 326–339, 1976.PubMedCrossRefGoogle Scholar
  146. 146.
    Nugent M, Walls JT, Tinker JH, Harrison CE: Post-ischemic myocardial function: no anesthetic protection. Anesthesiology 53: 5108, 1980.Google Scholar
  147. 147.
    Gerson JL, Hickey RF, Bainton CR: Treatment of myocardial ischemia with halothane or nitroprusside—propranolol. Anesth Analg (Cleve) 62: 10–14, 1982.Google Scholar
  148. 148.
    Lowenstein E, Foex P, Francis CM, Davies WL, Yusuf S, Ryder WA: Regional ischemic ventricular dysfunction in myocardium supplied by a narrowed coronary artery with increasing halothane concentration in the dog. Anesthesiology 55: 349–359, 1981.PubMedCrossRefGoogle Scholar
  149. 149.
    Behrenbeck T, Nugent M, Quasha A, Hoffman E, Ritman E, Tinker J: Halothane and ischemic regional myocardial wall dynamics. Anesthesiology 53: S140, 1980.CrossRefGoogle Scholar
  150. 150.
    Francis CM, Glazebrook C, Lowenstein E, Davies WL, Foex P, Ryder WA: Effect of halothane on the performance of the heart in the case of critical constriction of the L circumflex coronary artery. Br J Anaesth 52: 631P, 1980.Google Scholar
  151. 151.
    Cutfield GR, Francis CM, Foex P, Lowenstein E, Davies WL, Ryder WA: Myocardial function and critical constriction of the L anterior descending coronary artery: effects of enflurane. Br J Anaesth 52: 953P, 1980.Google Scholar
  152. 152.
    Hickey RF, Verrier ED, Baer RW, Vlahakes GJ, Hoffman JIE: Does deliberate hypotension produce myocardial ischemia when the coronary artery is stenotic? Anesthesiology 53: S89, 1980.CrossRefGoogle Scholar
  153. 153.
    Merin RG, Verdouw PD, De Jong JW: Myocardial functional and metabolic responses to ischemia in swine during halothane and fentanyl anesthesia. Anesthesiology 56: 84–92, 1982.PubMedCrossRefGoogle Scholar
  154. 154.
    Lowenstein E, Hill RD, Rajogopalan B, Schneider RC: Winnie the Pooh revisited, or, the more recent adventures of Piglet. Anesthesiology 56: 81–83, 1982.PubMedCrossRefGoogle Scholar
  155. 155.
    Waters DD, Daluz P, Wyatt HL, Swan JHC, Forrester JS: Early changes in regional and global left ventricular function induced by graded reductions in regional coronary perfusion. Am J Cardiol 39: 537–543, 1977.PubMedCrossRefGoogle Scholar
  156. 156.
    Hoffman WE, Miletich DJ, Albrecht RF: Cardiovascular and regional blood flow changes during halothane anesthesia in the aged rat. Anesthesiology 56: 444 448, 1982.Google Scholar
  157. 157.
    Lieberman RW, Jobes DR, Schwartz AJ, Andrews RW: Incidence of ischemia during CABG using halothane. Anesthesiology 51: S90, 1979.CrossRefGoogle Scholar
  158. 158.
    Slogoff S, Keats AS, OH E: Preoperative propranolol therapy and aorta-coronary bypass operation. JAMA 240: 1487–1490, 1978.PubMedCrossRefGoogle Scholar
  159. 159.
    Kistner JR, Miller ED, Lake CL, Ross WT Jr: Indices of myocardial oxygenation during coronary-artery revascularization in man with morphine versus halothane anesthesia. Anesthesiology 50: 324330, 1979.Google Scholar
  160. 160.
    Calverly RK, Smith NT, Jones CW, Prys-Roberts C, Eger EI II: Ventilatory and cardiovascular effects of enflurane anesthesia during spontaneous ventilation in man. Anesth Analg (Cleve) 57: 610–618, 1978.Google Scholar
  161. 161.
    Tarnow J, Eberlein HJ, Oser G, Patschke D, Schneider E, Schweichel E, Wilde J: Influence of modern inhalational anesthetics on haemodynamics, myocardial contractility, LV volumes and myocardial oxygen supply. Anaesthetist 26: 220–230, 1977.Google Scholar
  162. 162.
    Pask HT, England PJ, Prys-Roberts C: Effects of volatile inhalational anesthetic agents on isolated bovine cardiac myofibrillar ATPase. J Mol Cell Cardiol 13: 293–301, 1981.PubMedCrossRefGoogle Scholar
  163. 163.
    Prys-Roberts C, Lloyd JW, Fisher A, Kerr JH, Patterson TJS: Deliberate profound hypotension induced with halothane: studies of haemodynamics and pulmonary gas exchange. Br J Anaesth 46: 105116, 1974.Google Scholar
  164. 164.
    Lowenstein E, Philbin DM: Narcotic “anesthesia” in the eighties. Anesthesiology 55: 195–197, 1981.PubMedCrossRefGoogle Scholar
  165. 165.
    Waller JL, Hug CC, Nagle DM, Craver JM: Hemodynamic changes during fentanyl-oxygen anesthesia for aortocoronary bypass operation. Anesthesiology 55: 212–217, 1981.PubMedCrossRefGoogle Scholar
  166. 166.
    Stanley TH, Philbin DM, Coggins CH: Fentanyloxygen anesthesia for coronary artery surgery: cardiovascular and antidiuretic hormone responses. Can Anaesth Soc J 26: 168–172, 1979.PubMedCrossRefGoogle Scholar
  167. 167.
    Lunn JK, Stanley TH, Eisele J, et al.: High-dose fentanyl anesthesia for coronary artery surgery: plasma fentanyl concentrations and influence of nitrous oxide on cardiovascular responses. Anesth Analg (Cleve) 58: 390–395, 1979.Google Scholar
  168. 168.
    Zurick Am, Urzua J, Yared J-P, Estafanous FG: Comparison of hemodynamic and hormonal effects of large single dose fentanyl anesthesia and halothane/N20 anesthesia for coronary artery surgery. Anesth Analg (Cleve) 61: 521–526, 1982.Google Scholar
  169. 169.
    Sonntag H, Larsen R, Hilfiker O, Kettler D, Brockschnieder B: Myocardial blood flow and oxygen consumption during high-dose fentanyl anesthesia in patients with coronary disease. Anesthesiology 56: 417–422, 1982.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1984

Authors and Affiliations

  • Margaret G. Pratila
  • Vasilios Pratilas

There are no affiliations available

Personalised recommendations