Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 34))

Abstract

Both quantitative and qualitative assessment of normal cardiovascular function differ with age of the organism studied [1–4]. Thus, functional studies of the normal heart at a single age are incomplete and represent only a point on a continuum. A full understanding of heart function in stressful or pathologic states must consider that age-related changes modify the substrate upon which the stress or disease process is superimposed and that the expression of a given pathologic state is not solely due to the disease per se, but represents an age—disease interaction. Striking examples of this interaction can be observed in cardiac overload states [5] or in the effect of adaptation of the myocardium to chronic physical conditioning [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gerstenblith G, Lakatta EG, Weisfeldt ML: Age changes in myocardial function and exercise response. Prog Cardiovasc Dis 19: 1–21, 1976.

    Article  PubMed  CAS  Google Scholar 

  2. Lakatta EG: Alterations in the cardiovascular system that occur in advanced age. Fed Proc 38: 163–167, 1979.

    PubMed  CAS  Google Scholar 

  3. Lakatta EG: Heart. In: Masoro EJ (ed) CRC handbook of physiology of aging. Boca Ranson FL: CRC, 1981, pp 269–282.

    Google Scholar 

  4. Lakatta EG, Yin FCP: Myocardial aging: functional alterations and related cellular mechanisms. Am J Physiol 242: H927–941, 1982.

    PubMed  CAS  Google Scholar 

  5. Walford GD, Spurgeon HA, Lakatta EG: Volume overload hypertrophy in mid-late adult life diminishes contractile performance and prolongs contraction duration. Circulation 62: III - 13, 1980.

    Google Scholar 

  6. Spurgeon HA, Steinbach MF, Lakatta EG: Chronic exercise prevents characteristic age-related changes in rat cardiac contraction. Am J Physiol (Heart Circ Physiol 13 ): H513 — H518, 1983.

    Google Scholar 

  7. Yin FCCP, Spurgeon HA, Weisfeldt ML, Lakatta EG: Mechanical properties of myocardium from hypertrophied rat hearts: a comparison between hypertrophy induced by senescence and by aortic banding. Circ Res 46: 292–300, 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Rothbaum DA, Shaw DJ, Angell CS, Shock NW: Cardiac performance in the unanesthetized senescent male rat. J Gerontol 28: 287–292, 1973.

    Article  PubMed  CAS  Google Scholar 

  9. Yin FCP, Spurgeon HA, Rakusan K, Weisfeldt ML, Lakatta EG: Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am J Physiol 243 (Heart Circ Physiol 12): H941 — H947, 1982.

    PubMed  CAS  Google Scholar 

  10. Weisfeldt ML, Loeven, Shock NW: Resting and active mechanical properties of trabeculae carneae from aged male rats. Am J Physiol 220: 1921–1927, 1971.

    PubMed  CAS  Google Scholar 

  11. Rakusan K, Poupa O: Capillaries and muscle fibres in the heart of old rats. Gerontologia 9: 107–112, 1964.

    Article  Google Scholar 

  12. Tomanek RJ: Effects of age and exercise on the extent of the myocardial capillary bed. Anat Rec 167: 55–62, 1970.

    Article  PubMed  CAS  Google Scholar 

  13. Travis DF, Travis A: Ultrastructural changes in the left ventricular rat myocardial cells with age. J UItrastruct Res 39: 124–148, 1972.

    Article  CAS  Google Scholar 

  14. Cavoto FV, Kelliher GJ, Robert J: Electrophysiological changes in the rat atrium with age. Am J Physiol 226: 1293–1297, 1974.

    PubMed  CAS  Google Scholar 

  15. Roberts J, Goldberg PB: Changes in cardiac membranes as a function of age with particular emphasis on reactivity to drugs. In: Cristofalo VJ, Roberts J, Adelman RC (eds) Advances in experimental medicine and biology. Vol 61: Explorations in aging. New York: Plenum, 1975, pp 119–148.

    Google Scholar 

  16. Lakatta EG, Gerstenblith G, Angell CS: Prolonged contraction duration in aged myocardium. J Clin Invest 55: 61–68, 1975.

    Article  PubMed  CAS  Google Scholar 

  17. Rosen MR, Reder RF, Hordof AJ, Davies M, Danilo P Jr: Age-related changes in Purkinje fiber action potentials of adult dogs. Circ Res 43: 931–938, 1978.

    Article  PubMed  CAS  Google Scholar 

  18. Rumberger E, Timmermann J: Age-changes of the force—frequency-relationship and the duration of action potential isolated papillary muscles of guinea pig. Eur J Appl Physiol 34: 277–284, 1976.

    Article  Google Scholar 

  19. Wei JY, Spurgeon HA, Lakatta EG: Excitation-contraction in rat myocardium: alteration with adult aging. Am J Physiol (in press).

    Google Scholar 

  20. Gulch RW: The effect of elevated chronic loading on the action potential of mammalian myocardium. J Mol Cell Cardiol 12: 415–420, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Lakatta EG: Excitation—contraction. In: Weisfeldt ML (ed) Aging. Vol 12: The aging heart: its function and response to stress. New York: Raven, 1980, pp 77–100.

    Google Scholar 

  22. Urthaler F, Walker AA, James TN: The effect of aging on ventricular contractile performance. Am Heart J 96: 481–485, 1978.

    Article  PubMed  CAS  Google Scholar 

  23. Lee SE Mainwood GW, Korecky B: The electrical and mechanical response of rat papillary muscle to paired pulse stimulation. Can J Physiol Pharmacol 48: 216–225, 1970.

    Article  PubMed  Google Scholar 

  24. Fabiato A, Fabiato F: Contraction induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol 249: 469–495, 1975.

    PubMed  CAS  Google Scholar 

  25. Daui AM, Cittadini A, Inesi G: Calcium transport and contractile activity in dissociated mammalian heart cells. Am J Physiol 237: C147 — C155, 1979.

    Google Scholar 

  26. Stern MD, Kort AA, Bhatnagar GM, Lakatta EG: Scattered-light intensity fluctuations in diastolic rat cardiac muscle caused by spontaneous Ca + + -dependent cellular mechanical oscillations. J Gen Physiol 82: 119–153, 1983.

    Article  PubMed  CAS  Google Scholar 

  27. Kort AA, Lakatta EG: Ca2+-dependent mechanical oscillations occur spontaneously in unstimulated mammalian cardiac tissue. Circ Res, 1984 (in press).

    Google Scholar 

  28. Fabiato A: Calcium release in skinned cardiac cells: variations with species, tissues, and development. Fed Proc 41: 2238–2244, 1982.

    PubMed  CAS  Google Scholar 

  29. Narayanan N: Differential alterations in ATP-supported calcium transport activities of sarcoplasmic reticulum and sarcolemma of aging myocardium. Biochim Biophys Acta 678: 442–459, 1981.

    Article  PubMed  CAS  Google Scholar 

  30. Froelich JP, Lakatta EG, Beard E, Spurgeon HA, Weisfeldt ML, Gerstenblith G: Studies of sarcoplasmic reticulum function and contraction duration in young adult and aged rat myocardium. J Mol Cell Cardiol 10: 427–438, 1978.

    Article  Google Scholar 

  31. Lakatta EG, Lappe DL: Diastolic scattered light fluctuation, resting force and twitch force in mammalian cardiac muscle. J Physiol (Lond) 315: 369–394, 1981.

    CAS  Google Scholar 

  32. Bhatnagar GM, Walford DG, Beard ES, Humphries SH, Lakatta EG: ATPase activity and force production in myofibrils and twitch characteristics in intact muscle from neonatal, adult, and senescent rat myocardium. J Mol Cell Cardiol 1984 (in press).

    Google Scholar 

  33. Lappe DL, Lakatta EG: Intensity fluctuation spectroscopy monitors contractile activation in “resting” cardiac muscle. Science 207: 1369–1371, 1980.

    PubMed  CAS  Google Scholar 

  34. Gerstenblith G, Spurgeon HA, Froelich JP, Weisfeldt ML, Lakatta EG: Diminished inotropic responsiveness to ouabain in aged rat myocardium. Circ Res 44: 517–523, 1979.

    Article  PubMed  CAS  Google Scholar 

  35. Jewell RB: A reexamination of the influence of muscle length on myocardial performance. Circ Res 40: 221–230, 1977.

    Article  PubMed  CAS  Google Scholar 

  36. Lakatta EG, Spurgeon HA: Force staircase kinetics in mammalian cardiac muscle: modulation by muscle length. J Physiol (Lond) 299: 337–352, 1980.

    CAS  Google Scholar 

  37. Spurgeon HA, Thorne PR, Yin FCP, Shock NW, Weisfeldt ML: Increased dynamic stiffness of trabeculae carneae from senescent rats. Am J Physiol 232: H373–380, 1977.

    PubMed  CAS  Google Scholar 

  38. Holloszy JO, Booth FW: Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 38: 273–291, 1976.

    Article  PubMed  CAS  Google Scholar 

  39. Tomanek RJ, Taunton CA, Liskop KS: Relationship between age, chronic exercise, and connective tissue of the heart. J Gerontol 27: 33–38, 1972.

    Article  PubMed  CAS  Google Scholar 

  40. Alpert NR, Gale HH, Taylor N: The effect of age on contractile protein ATPase activity and the velocity of shortening. In: Tanz RD, Kavaler F, Robert J (eds) Factors influencing myocardial contractility. New York: Academic, 1976, pp 127–133.

    Google Scholar 

  41. Heller LJ, Whitehorn WV: Age-associated alterations in myocardial contractile properties. Am J Physiol 222: 1613–1619, 1972.

    PubMed  CAS  Google Scholar 

  42. Close R: The relation between intrinsic speed of shortening and duration of the active state of muscle. J Physiol (Lond) 180: 542–559, 1965.

    CAS  Google Scholar 

  43. Barany M: ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol (Suppl) 50: 197–216, 1967.

    Article  Google Scholar 

  44. Marston SB, Taylor EW: Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles. J Mol Biol 139: 573–600, 1980.

    Article  PubMed  CAS  Google Scholar 

  45. Lakatta EG: Age-related alterations in the cardiovas cular response to adrenergic mediated stress. Fed Proc 39: 3173–3177, 1980.

    PubMed  CAS  Google Scholar 

  46. Lakatta EG, Gerstenblith G, Angell CS, Shock NW, Weisfeldt ML: Diminished inotropic response of aged myocardium to catecholamine. Circ Res 36: 262–269, 1975.

    Article  PubMed  CAS  Google Scholar 

  47. Guarnieri T, Filburn CR, Zitnik G, Roth GS, Lakatta EG: Contractile and biochemical correlates of (3adrenergic stimulation of the aged heart. Am J Physiol 239:HSO1–HSO8, 1980.

    Google Scholar 

  48. Fleisch JH: Age-related decrease in beta adrenoceptor activity of the cardiovascular system. Trends Pharmacol Sci 2: 337–339, 1981.

    Article  CAS  Google Scholar 

  49. Beard ES, Lakatta: 1984 (in preparation).

    Google Scholar 

  50. Kadoma M, Froehlich J: Regulation of Cat+ transport activity in sarcoplasmic reticulum from young and old hearts: effects of cAMP and protein kinase. 1984 (in preparation).

    Google Scholar 

  51. Abrass IB, Davis JL, Scarpace PJ: Isoproterenol responsiveness and myocardial (3-adrenergic receptors in young and old rats. J Gerontol 37: 156–160, 1982.

    Article  PubMed  CAS  Google Scholar 

  52. Narayanan N, Derby J-A: Alterations in the properties of (3-adrenergic receptors of myocardial membranes in aging: impairments in agonist-receptor interactions and guanine nucleotide regulation accompany diminished catecholamine-responsiveness of adenylate cyclase. Mech Ageing Dev 19: 127–139, 1982.

    Article  PubMed  CAS  Google Scholar 

  53. O’Connar SW, Scarpace PJ, Abrass IB: Age-associated decrease of adenylate cyclase activity in rat myocardium. Mech Ageing Dev 16: 91–95, 1981.

    Article  Google Scholar 

  54. Scarpace PJ, Abrass IB: Thyroid hormone regulation of P-adrenergic receptor number in aging rats. Endocrinology 108: 1276–1278, 1981.

    Article  PubMed  CAS  Google Scholar 

  55. Zitnik G, Roth GS: Effects of thyroid hormones on cardiac hypertrophy and (3-adrenergic receptors during aging. Mech Ageing Dev 15: 19–28, 1981.

    Article  PubMed  CAS  Google Scholar 

  56. Fleisch JH, Hooker CS: The relationship between age and relaxation of vascular smooth muscle in the rabbit and rat. Circ Res 38: 243–249, 1976.

    Article  PubMed  CAS  Google Scholar 

  57. Godfraind T: Alternative mechanisms for the potentiation of the relaxation evoked by isoprenaline in aortae from young and aged rats. Eur J Pharmacol 53: 273–279, 1979.

    Article  PubMed  CAS  Google Scholar 

  58. Parker RJ, Berkowitz BA, Lee C-H, Denckla WD: Vascular relaxation, aging and thyroid hormones. Mech Ageing Dev 8: 397–405, 1978.

    Article  PubMed  CAS  Google Scholar 

  59. Kelliher GJ, Conahan ST: Changes in vagal activity and response to muscarinic receptor agonists with age. J Gerontol 35: 842–849, 1980.

    Article  PubMed  CAS  Google Scholar 

  60. Verkhratsky NS: Acetylcholine metabolism peculiarities in aging. Exp Gerontol 5: 49–56, 1970.

    Article  PubMed  CAS  Google Scholar 

  61. Frolkis VV, Berzrukov VV, Schevchuk VG: Hemodynamic response and its regulation in old age. Exp Gerontol 10: 251–271, 1975.

    Article  PubMed  CAS  Google Scholar 

  62. Kul’chitskii OK: Effect of acetylcholine on the cyclic GMP level in the rat heart at different ages. Bull Exp Biol Med 90: 1237–1239, 1980.

    Article  Google Scholar 

  63. Langer GA, Brady AJ, Tan ST, Serena SD: Correlation of the glycoside response, the force staircase and the action potential configuration in the neonatal rat heart. Circ Res 36: 744–752, 1975.

    Article  PubMed  CAS  Google Scholar 

  64. Erdmann E, Philipp G, Scholz H: Cardiac glycoside receptor, (Na+ + K+)-ATPase activity and force of contraction in rat heart. Biochem Pharmacol 29: 3219–3229, 1980.

    Article  PubMed  CAS  Google Scholar 

  65. Ku DD, Akera T. Robin T, Brody TM: Comparative species studies on the effect of monovalent cations and ouabain on cardiac Na+, K+-adenosine triphosphatase and contractile force. J Pharmacol Exp Ther 197: 458–469, 1976.

    PubMed  CAS  Google Scholar 

  66. Guarnieri T, Spurgeon H, Froehlich JP, Weisfeldt ML, Lakatta EG: Diminished inotropic response but unaltered toxicity to acetylstrophanthidin in the senescent beagle. Circulation 60: 1548–1554, 1979.

    Article  PubMed  CAS  Google Scholar 

  67. Abu-Erreish GM, Neely JR, Whitmer JT, Whitman V, Sanadi DR: Fatty acid oxidation by isolated per-fused working hearts of aged rats. Am J Physiol 232: E258–262, 1977.

    PubMed  CAS  Google Scholar 

  68. Weisfeldt ML, Wright JR, Shreiner DP, Lakatta E, Shock NW: Coronary flow and oxygen extraction in the perfused heart of senescent male rats. J Appl Physiol 30: 44–49, 1971.

    PubMed  CAS  Google Scholar 

  69. Frolkis VV, Bogatskaya LN: The energy metabolism of myocardium and its regulation in animals of various age. Exp Gerontol 3: 199–210, 1968.

    Article  PubMed  CAS  Google Scholar 

  70. Hansford RG: Lipid oxidation by heart mitochrondria from young adult and senescent rats. Biochem J 170: 285–295, 1978.

    PubMed  CAS  Google Scholar 

  71. Hansford RG: Metabolism and energy production. In: Weisfeldt ML (ed) Aging. vol 12: The aging heart: its function and response to stress. New York: Raven, 1980, pp 25–76.

    Google Scholar 

  72. DU JT, Beyer TA, Lang CA: Protein biosynthesis in aging mouse tissues. Exp Gerontol 12: 181–191, 1977.

    Article  PubMed  CAS  Google Scholar 

  73. Florini JR, Saito Y, Manowitz EJ: Effect of age on thyroxine-induced cardiac hypertrophy in mice. J Gerontol 28: 293–297, 1973.

    Article  PubMed  CAS  Google Scholar 

  74. Geary S, Florini JR: Effect of age on rate of protein synthesis in isolated perfused mouse hearts. J Gerontol 27: 325–332, 1972.

    Article  PubMed  CAS  Google Scholar 

  75. Meerson FZ: The myocardium in hyperfunction, hypertrophy and heart failure. Circ Res (Suppl 2)25: 1163, 1969.

    Google Scholar 

  76. Meerson, FZ, Javich MP, Lerman MI: Decrease in the rate of RNA and protein synthesis and degradation in the myocardium under long-term compensatory hyperfunction and on aging. J Mol Cell Cardiol 10: 145–159, 1978.

    Article  PubMed  CAS  Google Scholar 

  77. Crie JS, Millward DJ, Bates PC, Griffin EE, Wildenthal K: Age-related alterations in cardiac protein turnover. J Mol Cell Cardiol 13: 589–598, 1981.

    Article  PubMed  CAS  Google Scholar 

  78. Grimm AF, Kubota R, Whitehorn WV: Ventricular nucleic acid and protein levels with myocardial growth and hypertrophy. Circ Res 19: 552–558, 1966.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lakatta, E.G. (1984). Aging of the Adult Heart. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1171-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1171-4_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1173-8

  • Online ISBN: 978-1-4757-1171-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics